Chapter 51: Control of Hazardous Energy

Quick Start Summary

Who needs to know about these requirements

The requirements of the Control of Hazardous Energy (CoHE) program apply to workers performing service and maintenance of machines, equipment, or systems where hazardous energy may be present (for example, electrical, thermal, mechanical, hydraulic, pneumatic, chemical, and ionizing and non-ionizing radiation), their supervisors; equipment designers, custodians, and owners; LOTO inspectors; project managers, field construction and service managers, and points of contact; the CoHE program manager, related ESH program managers; and associate laboratory directors. The program also covers administrative lock and tag control, which may involve the lockout of equipment for configuration or operational purposes, but which may not be used alone to protect workers from hazardous energy.

Why

Exposure to hazardous energy from the unexpected energization or start-up of machines, equipment, or systems can cause serious injury or death.

What do I need to know

Each worker must have control over hazardous energy that could be encountered during service and maintenance of equipment. A hazard analysis is required to confirm the presence of hazardous energy. If hazardous energy is confirmed the appropriate lockout procedure must be used. Simple lockout may be performed under the simple lockout procedure; complex lockout (involving for example multiple energy sources, crews, crafts, or locations) requires either a group or equipment-specific lockout procedure. Under these procedures authorized workers may begin work only after they have placed their personal lock(s) on the energy isolating device(s) or group lockout device in accordance with the applicable procedure: no worker may work under another worker’s lock.

When

These requirements take effect 5 July 2022.

Where do I find more information

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)

- Chapter 51, “Control of Hazardous Energy”

Or contact the program manager.

1 Service and maintenance includes activities such as constructing, installing, setting up, adjusting, inspecting, modifying, demolishing, and maintaining and/or servicing machinery or equipment.
Chapter 51

Control of Hazardous Energy

1 Purpose

The purpose of this program is to prevent worker exposure to hazardous energy (such as from unexpected energization, start-up, or release of stored energy). It covers controlling hazardous energy associated with the service and maintenance of machines, equipment, or systems. It also covers administrative lock and tag control, which may involve the lockout of equipment for configuration or operational purposes, but which may not be used alone to protect workers from hazardous energy. It applies to workers (as authorized, lead authorized, affected, and zero voltage verification workers and operations group members) and supervisors; equipment designers, custodians, and owners; LOTO inspectors; project managers, field construction and service managers, and points of contact; the CoHE program manager, related ESH program managers; and associate laboratory directors.

Note Control of hazardous energy is commonly referred to as CoHE, and lockout/tagout is commonly referred to as LOTO or lockout.

1.1 Exemptions

The following activities are exempt from CoHE requirements.

- Work on cord-and-plug connected equipment, in which all these conditions are met:
 - There is a single energy source.
 - All of the hazardous energy is controlled by unplugging the equipment and there is no potential for stored hazardous energy.
 - The plug remains under the exclusive control of the worker performing the servicing or maintenance.

- Hot tap operations, the use of specialized drilling equipment to tap into in-service, pressurized process piping for the purpose of attaching a mechanical or welded branch fitting, in which all these conditions are met:
 - Continuity of service is essential.
 - Shutdown of the system is impractical.
 - Documented procedures are followed.
 - Special equipment is used that will provide proven, effective protection for workers.

Permission to hot tap a process system is limited to situations in which system shutdown is impossible (such as a leaking tank or other non-isolable leak) or where hot tapping is shown to be less hazardous than shutting down and locking out the system and performing a cold tap. In other words, the decision
to hot tap must be safety-based. It must be shown that, on the whole, it is safer to perform the hot tap
than to shutdown, depressurize, and lock out the system. (See Control of Hazardous Energy: General
Requirements for approval requirements.)

- Minor tool changes and adjustments, and other minor servicing activities that take place during normal
 operations, provided that (a) they are routine, repetitive, and integral to the use of the equipment, and
 (b) the work is performed using alternative measures which provide effective personnel protection.
 (See Control of Hazardous Energy: General Requirements, for guidance on the use of alternative
 energy controls to provide effective personnel protection.)

Service and maintenance that takes place during normal production operations requires control of
hazardous energy in accordance with this program if

- A worker is required to remove or bypass a guard or other safety device, or
- A worker is required to place any part of his or her body into an area on a machine or piece of
 equipment where work is actually performed upon the material being processed (point of
 operation) or where an associated danger zone exists during a machine operating cycle.

- Operations on energized electrical equipment such as diagnostics and testing that can only be
 performed with the circuit energized. Workers performing these activities must follow all requirements
 of Chapter 8, “Electrical Safety”, including safe work practices, personal protective equipment, safety
 analyses, work plans, and management approvals.

2 Roles and Responsibilities

Functional roles and general responsibilities for each listed below. More detailed responsibilities and when
they apply are provided in the procedures and requirements.

The roles may be performed by one or more individuals and one individual may play more than one role,
depending on the structure of the organizations involved. Responsibilities may be delegated.

2.1 Authorized Worker

- Completes and stays current in required training and authorized worker certification and annual re-
 certification
- Obtains permission from the equipment custodian before implementing an equipment-specific lockout
 procedure (ELP)
- Performs lockout in accordance with an approved lockout procedure: simple, equipment-specific
 lockout procedure (ELP), or group lockout procedure
- Coordinates with equipment owner/custodian to shut down machinery, equipment, or systems
- Contacts supervisor if asked to perform any lockout that is beyond current level of experience,
 knowledge, or training
- Conducts hazard analyses as assigned
- Never attempts to start, energize, or use machinery, equipment, or systems that have been locked and
 tagged out by others, nor attempts to defeat or remove another worker’s LOTO lock or tag
- Notifies his or her supervisor or line management if he has concerns regarding the accuracy of
drawings and documents used for planning lockouts
Notifies his supervisor or line management if he has concerns regarding the maintenance status of equipment to be operated when implementing lockouts

2.2 Lead Authorized Worker

- Must be an authorized worker
- For a complex lockout, is designated by the responsible manager or supervisor in consultation with the equipment custodian
- Ensures a written plan of execution is developed and followed
- Coordinates implementation of an ELP or group lockout procedure
- Coordinates multiple work groups and multiple work scopes associated with the lockout
- Provides continuity of protection for all workers for the duration of the lockout
- Verifies completion of work and proper lock-off of all authorized workers
- Coordinates system restoration

2.3 Operations Group Member

- May establish energy isolation for systems under his or her control
- Performs the functions and responsibilities of the lead authorized worker if so assigned when group lockout is established by an operations group
- If involved in the execution of lockout procedures must be an authorized worker

2.4 Zero Voltage Verification Worker

- Must be a qualified person/qualified electrical worker
- Completes specified training
- Must be authorized by his or her supervisor to perform zero voltage verification (ZVV)
- Restricts equipment access in accordance with the arc-flash label(s) whenever there are exposed electrical parts
- Performs ZVV in accordance with requirements

2.5 Affected Worker

- Must be notified before equipment is locked out and after the lockout is removed
- Never attempts to start, energize, or use machinery, equipment, or systems that have been locked or tagged out by others, nor attempts to defeat or remove another worker’s LOTO lock or tag

2.6 Supervisor / Line Management

- Ensures that CoHE program requirements are implemented for work activities in his or her organization and facilities
Ensures that workers performing lockouts have personal protective equipment (PPE) as required for the work to be done

Ensures that adequate safety signs, barricades, shields, barriers, tools, meters, and work space illumination are available when workers perform lockout

Ensures design documents used for CoHE are maintained up-to-date and provided to workers performing lockouts; if up-to-date documents are not available, must ensure that an equally effective means of locating sources of hazardous energy is employed

Ensures that any operations locks are uniquely identified as required and that all keys remain under the control of group members

Establishes maintenance programs that preserve or restore the condition of equipment to a state that does not present an undue hazard to workers during equipment operation

Ensures a job safety analysis is prepared for any hot tap operations and approves

2.7 Project Manager / Field Construction Manager / Service Manager / Point of Contact

Ensures that subcontractor-authorized worker LOTO and electrical safety training records, as applicable, have been provided by the subcontractor and accepted by SLAC

Ensures that subcontractor affected and authorized workers understand and follow the applicable provisions of SLAC’s and the subcontractors’ CoHE programs

Ensures that equipment and systems are first locked and tagged by SLAC authorized workers; subcontractor authorized workers lock over the SLAC locks

Ensures that all lockouts are addressed in a job safety analysis (JSA) or electrical work plan (EWP) and in the daily safety tailgate briefing, and that all workers participating in the lockout participate in the briefing
Ensures that subcontractors maintain up-to-date marked-up drawings at the job site for all construction projects, and that the marked-up drawings are available to all SLAC and subcontractor authorized workers for their use planning lockouts

2.8 Equipment Custodian

- Ensures equipment is evaluated for all hazardous energy sources
- Understands the equipment, including all of its energy sources and energy isolation points
- Ensures a compliant ELP is written and reviewed if one is required
- Ensures the ELP is maintained and available to workers
- Provides workers with complete and accurate electrical circuit diagrams, mechanical drawings, and procedures necessary to understand the equipment/system. If up-to-date documents are not available, the equipment custodian must ensure that an equally effective means of locating sources of hazardous energy is employed.
- Establishes maintenance programs that preserve or restore the condition of equipment to a state that does not present an undue hazard to workers during equipment operation
- Updates ELPs that have been inspected and returned with changes marked up by the authorized worker, and resolves any discrepancies with the worker
- Grants permission to authorized worker(s) to implement an ELP
- For a complex lockout, in consultation with the responsible manager or supervisor, designates an authorized worker with appropriate knowledge, skills, and training to act as lead authorized worker
- Provides qualified workers to shut down and lock out equipment in coordination with service workers

2.9 Equipment Owner

- Ensures that a knowledgeable, qualified person (such as the equipment custodian) has evaluated the equipment for hazardous energy types and magnitudes
- Ensures that new and extensively modified machinery, equipment, or systems are equipped with energy-isolating devices designed to accept locks
- Designates or act as the equipment custodian for any machine, piece of equipment, or system
- Provides complete and accurate design documents to workers who perform lockout/tagout tasks and to equipment custodians or other workers. If up-to-date documents are not available, the equipment owner must ensure that an equally effective means of locating sources of hazardous energy is employed.
- Establishes maintenance programs that preserve or restore the condition of equipment to a state that does not present an undue hazard to workers during equipment operation
- Coordinates with authorized workers in the preparation, lockout/tagout, and service or maintenance of equipment to ensure that all energy sources are isolated
2.10 Engineer / Designer

- Designs for effective control of hazardous energy by workers when performing activities outlined in this chapter
- Specifies or designs isolation devices that accept lockout devices into all equipment undergoing significant repair or modification or being replaced

2.11 ELP and EIP Preparer / Lead Reviewer

- Conducts hazard analyses for ELPs and EIPs
- Prepares or reviews ELPs and EIPs
- Must be a knowledgeable worker current in the required training
- For ELPs involving research and development or experimental equipment the ELP preparer and lead reviewer must be competent persons as defined in this chapter

2.12 LOTO Inspector

- Must be an authorized worker
- Certifies authorized workers by witnessing the conduct of the lockout procedure assigned to the worker and determining, through observation and discussion, if the worker understands the activities and carries them out as required; refrains from certifying the worker if the worker does not or cannot demonstrate competency in implementing the assigned lockout procedure
- If a worker is being certified in the conduct of an ELP, revalidates the ELP to ensure that it is adequate in controlling all hazardous energies related to the equipment. If any inaccuracies or inadequacies are found, marks up the ELP and sends to the equipment custodian immediately after the inspection.

2.13 Associate Laboratory Director

- In consultation with the equipment owner, designates the equipment custodian for any machine, piece of equipment, or system for which no equipment custodian has yet been assigned
- Resolves disputes concerning designation of equipment owners and custodians (for specific equipment or systems)

2.14 Related ESH Program Manager

- Reviews and approves, as appropriate, alternative energy controls for his or her respective program

2.15 Control of Hazardous Energy Program Manager

- Maintains a high level of knowledge concerning control of hazardous energy and stays updated on new requirements
- Develops requirements and procedures for the control of hazardous energy
- Assists authorized workers with implementation of the CoHE program
Provides CoHE program oversight to ensure it is understood and effectively implemented
Ensures comprehensive and effective lockout/tagout training is available and delivered
Approves hot tap operations by reviewing and approving the required job safety analysis
Reviews and, if needed, updates this chapter
Performs an annual inspection of the CoHE program; corrects any deviations or inadequacies observed
Performs program self-assessments

3 Procedures, Processes, and Requirements

These documents describe the detailed requirements for this program and how to implement them:

- **Control of Hazardous Energy: General Requirements** (SLAC-I-730-0A10S-004). Describes requirements that apply to all lockouts and specific requirements for simple versus complex lockouts and administrative lockouts
- **Control of Hazardous Energy: Hazard Analysis Procedure** (SLAC-I-730-0A10C-002). Describes process for determining hazardous energy sources and provides thresholds and other references
- **Control of Hazardous Energy: Simple Lockout Procedure** (SLAC-I-730-0A10C-003). Describes process for performing a simple lockout
- **Control of Hazardous Energy: Group Lockout Procedure** (SLAC-I-730-0A10C-006). Describes process for conducting a complex, group lockout
- **Control of Hazardous Energy: Zero Voltage Verification Procedure** (SLAC-I-730-0A10C-004). Describes process for verifying zero voltage
- **Control of Hazardous Energy: Authorized Worker Certification Procedure** (SLAC-I-730-0A10C-005). Describes process for certifying authorized workers to assigned lockout procedures; also covers revalidation of equipment-specific lockout procedures (ELPs)

These documents provide useful guidance; their use is not mandatory:

- **Control of Hazardous Energy: Simple Lockout Checklist for SLAC Employees** (SLAC-I-730-0A10J-008). Checklist for completing a simple lockout for SLAC employees
- **Control of Hazardous Energy: Group Lockout Checklist** (SLAC-I-730-0A10J-007). Checklist for completing a group lockout

These are the forms and tools for this program:

- **Control of Hazardous Energy: Alternative Authorization for Removing Locks and Tags Form** (SLAC-I-730-0A10J-002). Form for authorizing removal of a personal red lock and tag if the person who applied it is not available and is unable to return to site
- **Control of Hazardous Energy: Authorized Worker Certification Form** (SLAC-I-730-0A10J-004). Form for certifying authorized workers on assigned procedures and validating equipment-specific lockout procedures
The following are recommended templates. Equivalent forms may be used:

- **Control of Hazardous Energy: Equipment-specific Lockout Procedure (ELP) Template** (SLAC-I-730-0A10J-001). Template for creating an equipment-specific lockout procedure (ELP); lists required elements of an equipment-specific lockout procedure (ELP)
- **Control of Hazardous Energy: Group Lockout Energy Isolation Plan Template** (SLAC-I-730-0A10J-005). Template for creating group lockout energy isolation plans (EIPs); lists required elements of an energy isolation plan
- **Control of Hazardous Energy: Complex Lockout Permit** (SLAC-I-730-0A10J-006). Form for documenting lead authorized worker and sign on and sign off of workers for complex LOTO
- **Control of Hazardous Energy: Tag Templates** (SLAC-I-730-0A10J-003). Templates for creating tags

4 Training

4.1 Authorized Worker

Authorized workers will receive training in how to recognize hazardous energy sources, the type and magnitude of the energy present in the workplace, and the required lockout procedures to be followed to ensure energy isolation and control. The two required courses for authorized workers are

- ESH Course 157, Control of Hazardous Energy ([ESH Course 157](#)) (initially, with retraining every 36 months or more frequently as described below by taking ESH Course 157R, Control of Hazardous Energy [CoHE] Refresher ([ESH Course 157R](#))
- ESH Course 157PRA, Control of Hazardous Energy Practical ([ESH Course 157PRA](#)) (recertification every 12 months)

In addition, before an authorized worker is allowed to implement an ELP, the worker must have the training, knowledge, and experience required to perform the ELP steps. Any authorized worker may implement an ELP if authorized by his or her supervisor and permitted by the equipment custodian. Likewise, the equipment custodian may require on-the-job training specific to that equipment. Such training must be given by the equipment custodian or other knowledgeable person.

Workers must receive additional on-the-job training whenever their job assignment changes, a change in machines, equipment, or processes creates a new hazard, lockout procedures change, or observations or inspections reveal that an employee is not following or does not fully understand lockout procedures. The LOTO inspector may require the worker to repeat ESH Course 157/157R if the worker cannot demonstrate general knowledge of CoHE.

4.2 Zero Voltage Verification Worker

Authorized workers who apply test equipment to exposed conductors to perform zero voltage verification (ZVV) must also complete

- ESH Course 205, CPR/AED Training for Qualified Electrical Workers ([ESH Course 205](#)) (every 24 months)
- ESH Course 205PRA, CPR/AED Practical Training for Qualified Electrical Workers (ESH Course 205PRA) (every 24 months)
- At least one of the following, as determined by supervisor:
 - ESH Course 251, Electrical and General Safety Awareness for R&D (ESH Course 251) (every 36 months) or
 - ESH Course 274, Electrical-Low/High Voltage Training (ESH Course 274) (every 36 months)

4.3 Affected Worker

Affected workers will be instructed in the purpose, use, and restrictions of CoHE and how to recognize that CoHE is being implemented. Affected workers must complete

- ESH Course 136, Control of Hazardous Energy – Affected Employee (ESH Course 136)

Note Affected workers may take ESH Course 157, Control of Hazardous Energy (ESH Course 157) in lieu of ESH Course 136.

4.4 Administrative Lock and Tag Worker

Workers who apply lock and tag only for administrative purposes or configuration control must complete

- ESH Course 136, Control of Hazardous Energy – Affected Employee (ESH Course 136)

Note Workers who apply administrative lock and tag may take ESH Course 157, Control of Hazardous Energy (ESH Course 157) in lieu of ESH Course 136.

4.5 Supervisor / Line Management

Supervisors/first-line managers of personnel who apply LOTO lock and tag must take one of the following

- ESH Course 136, Control of Hazardous Energy – Affected Employee (ESH Course 136)
- ESH Course 157, Control of Hazardous Energy (ESH Course 157) (initially, with retraining every 36 months by taking ESH Course 157R, Control of Hazardous Energy [CoHE] Refresher (ESH Course 157R))

Note Supervisors and managers who want an in-depth understanding of the SLAC CoHE/LOTO program should take ESH Course 157, Control of Hazardous Energy (ESH Course 157).

4.6 ELP and EIP Preparer / Lead Reviewer

Equipment-specific lockout procedure (ELP) and energy isolation plan (EIP) preparers and lead reviewers must be current in

- ESH Course 157, Control of Hazardous Energy (ESH Course 157) (initially, with retraining every 36 months by taking ESH Course 157R, Control of Hazardous Energy [CoHE] Refresher (ESH Course 157R))
4.7 LOTO Inspector

LOTO inspectors must at the time of performing a certification be current in both

- ESH Course 157, Control of Hazardous Energy (ESH Course 157) (initially, with retraining every 36 months by taking ESH Course 157R, Control of Hazardous Energy [CoHE] Refresher [ESH Course 157R])
- ESH Course 157PRA, Control of Hazardous Energy Practical (ESH Course 157PRA) (recertification every 12 months)

4.8 Safety Officer

The radiation safety officer, laser safety officer, and electrical safety officer are required to familiarize themselves with lockout requirements as they relate to equipment and systems within their purview.

Safety officers are required to complete

- ESH Course 157, Control of Hazardous Energy (ESH Course 157) (initially, with retraining every 36 months by taking ESH Course 157R, Control of Hazardous Energy [CoHE] Refresher [ESH Course 157R])

5 Definitions

accountability. A method to account for all persons who could be exposed to hazardous energy during a complex lockout. At SLAC accountability is achieved by use of the complex lockout permit.

administrative lock and tag. Applying a restrictive lock and tag for purposes of operational or configuration control of the equipment or system, not for the personal protection of persons performing work on the equipment or system

alternative energy control. Authorized hazardous energy controls to be used during service and maintenance activities on energized or partially energized equipment where lockout/tagout is not feasible

blanking. The absolute closure of a pipe, line, or duct by fastening across its bore a solid plate or “cap” that completely covers the bore, which extends at least to the outer edge of the flange at which it is attached; and which is capable of withstanding the maximum upstream pressure (or in the case of lasers, the maximum laser irradiance). A blank flange and bolted slip blind are considered to be lockout devices.

blinding. (See blanking.)

boundary, arc flash protection. When an arc flash hazard exists, an approach limit at a distance from a prospective arc source within which a person could receive a second degree burn if an electrical arc flash were to occur.

boundary, limited approach. An approach limit at a distance from an exposed energized electrical conductor or circuit part within which a shock hazard exists. The distance varies as a function of voltage and is typically specified on the arc flash hazard label for electrical equipment.
capable of being locked out. An energy isolating device that is designed with a hasp or other means of attachment to which, or through which, a lock can be affixed, or that has a locking mechanism built into it. Other energy isolating devices are capable of being locked if lockout can be achieved without the need to dismantle, rebuild, or replace the energy-isolating device or permanently alter its energy control capability. (See also device, energy isolating.)

complex lockout permit. The sign-on/sign-off form used for complex lockout. The permit provides accountability for all persons working under a complex lockout/tagout.

continuity of protection. To freeze the state of a complex lockout for the duration of all work. The lead authorized worker is the first to lock on and the last to lock off the energy isolating devices or, if used, the group lockbox or multi-lock hasp(s). Continuity of protection ensures the equipment or system remains in a safe state for all workers across shift changes and pauses in work until all work is complete.

control of hazardous energy (CoHE). Control measures used to protect workers from exposure to all forms of hazardous energy due to accidental equipment energization or start-up, or from working on or near electrical conductors or circuit parts. Using lockout/tagout to de-energize and control equipment is the primary means to achieve CoHE during service or maintenance.

deactivate, deactivation. To place facilities and equipment in a safe and stable condition that is protective of workers, the public, and the environment, and that is economical to monitor and maintain for an extended period, until the eventual decommissioning of the facilities or equipment

de-energized. Isolated from all energy sources and not containing residual stored hazardous energy

device, energy isolating (also energy isolation device). A mechanical device that physically prevents the transmission or release of energy, including the following:

- A manually operated electrical circuit breaker
- A disconnect switch
- A manually operated switch by which the conductors of a circuit can be disconnected from all ungrounded supply conductors, and, in addition, no pole can be operated independently
- A line valve; a block; a blank flange, and any similar device used to block or isolate energy

Push buttons, selector switches, and other control-circuit-type devices are not energy isolating devices.

device, group lockout. A group lockbox, multi-lock hasp, or similar device that accepts multiple authorized worker personal locks

device, lockout. A device that uses a positive means such as a lock to hold an energy isolating device in the safe position that prevents the energizing of machinery or equipment. A blank flange or bolted slip blind are also considered lockout devices.

device, tagout. A prominent warning device, such as a tag and a means of attachment that can be securely fastened to an energy isolating device in accordance with an established procedure, to indicate that the energy isolating device and the equipment being controlled may not be operated until the tagout device is removed
electrically safe work condition. A state in which an electrical conductor or circuit part has been disconnected from energized parts, locked / tagged in accordance with established standards tested to ensure the absence of voltage, and grounded if determined necessary

energized. Connected to an energy source or containing residual or stored energy. De-energized equipment is considered energized until a zero energy state is verified.

energy source. Any source of energy, including electrical, mechanical, hydraulic, pneumatic, chemical, thermal, and radiation

equipment custodian. A person or organization responsible for servicing, maintaining, or repairing a machine, system or component (See also owner, equipment.)

equipment owner. A person or organization who exercises direct control over and has line responsibility for the operation of a machine, system, or component (See also custodian, equipment.)

group lockout energy isolation plan. A written plan used to establish group lockout/tagout energy isolation. The plan includes all steps required to lockout and de-energize equipment and systems, including release of stored energy and zero energy verification. A group lockout/tagout procedure together with the energy isolation plan and the complex lockout permit constitute the written plan of execution required by NFPA 70E for complex lockout/tagout.

hazardous energy. Energy that could cause injury to a worker involved in service or maintenance through the unexpected release of stored energy or the unexpected energization or startup of machinery, equipment, or a system

hot tap operations. The use of specialized drilling equipment to tap into in-service, pressurized process piping for the purpose of attaching a mechanical or welded branch fitting

individual control. Control over hazardous energy by an individual worker while performing servicing or maintenance by application of SLAC control of hazardous energy program principles; typically achieved by application of personal locks and tags

lock, administrative. A non-red lock used for operational or configuration control of equipment or systems; may not be relied on for control of hazardous energy during servicing or maintenance

lock, group lockout master. A lock applied to a group lockout/tagout lock box by the lead authorized worker. The presence of a group lockout master lock signifies that energy isolation is complete and that the system is safe for work.

lock, operations. A red lock owned by an operations department or group used exclusively for complex lockout

lock, personal. A red lock (SLAC workers) or otherwise uniquely identifiable lock (subcontractor workers) that has only one key and that key remains in the control of the worker. Personal locks may not be used for any purpose other than lockout/tagout.

lockout (also lockout/tagout, LOTO). The placement of a lockout device on an energy isolating device, in accordance with an established procedure, ensuring that the energy isolating device and the equipment being controlled cannot be energized or operated until the lockout device is removed. Lockout is the primary means for controlling hazardous energy.
lockout, complex. Lockout/tagout for machinery, equipment, or system that has more than one energy source, or involves more than one department, group, or employer (for example when subcontractors are working side-by-side with SLAC employees).

lockout, group. Lockout that involves multiple authorized workers that affords each authorized worker a level of protection equivalent to that provided by the use of a personal lockout device. Each person applies a unique lock and tag to a multi-lock hasp or group lock box (or equivalent).

lockout, simple. Lockout of machinery, equipment, or system to be worked on that 1) has a single source of hazardous energy that can be readily identified, isolated, locked out, and that the single source controls all hazards with no potential for stored hazardous energy, and that 2) involves only one department, group, craft, or employer, and no shift change, and 3) contains no potential to release a hazardous material.

LOTO inspector. An authorized worker who certifies other authorized workers on lockout/tagout procedures and, during worker certification, may also evaluate the adequacy of equipment-specific lockout procedures (ELPs)

normal production operation. The use of machinery or equipment to perform its intended production function

out-of-service equipment. Equipment that is not in service and is no longer required for SLAC operations

person, competent. A person who meets all the requirements of an authorized worker as defined in this chapter and who, in addition, is responsible for all work activities or safety procedures related to custom or special equipment and has detailed knowledge regarding the exposure to electrical hazards, the appropriate control methods to reduce the risk associated with those hazards, and the implementation of those methods (see NFPA 70E, Article 350, “Safety-Related Work Requirements: Research and Development Laboratories”)

person, qualified. A person who has demonstrated skills and knowledge related to the construction and operation of electrical equipment and installations and has received safety training to identify and avoid the hazards involved. Also known as a qualified electrical worker.

procedure, equipment-specific lockout (ELP). A written procedure for the lockout of specific machinery, equipment, or systems (or a group of machines, equipment, or systems that are alike). The ELP and complex lockout permit together constitute the written plan of execution required by NFPA 70E for complex lockout/tagout.

procedure, group lockout. A written procedure used for system-level lockout, usually involving multiple pieces of equipment or multiple systems, and multiple energy isolation points; may be used for simple or complex lockout. The group lockout procedure with the energy isolation plan (EIP) and the complex lockout permit together constitute the written plan of execution required by NFPA 70E for complex lockout.

procedure, simple lockout. A lockout procedure used when the machinery, equipment, or system to be worked on 1) has a single source of hazardous energy that can be readily identified, isolated, locked out, and that the single source controls all hazards with no potential for stored hazardous energy, and that 2) involves only one department, group, craft, or employer, and no shift change, and 3) contains no potential to release a hazardous material; may be used for simple lockout, but not for complex lockout.
safety-related maintenance. Preserving or restoring the condition of electrical equipment and installations, or parts of either, for the safety of employees who work where exposed to electrical hazards. Electrical equipment must be maintained in accordance with manufacturers’ instructions or industry consensus standards to reduce the risk of failure and the subsequent exposure of employees to electrical hazards.

service and maintenance. Includes workplace activities such as constructing, installing, setting up, adjusting, inspecting, modifying, demolishing, and maintaining and/or servicing machinery or equipment. These activities include lubrication, cleaning or un-jamming of machines or equipment and making adjustments or tool changes, where the employee may be exposed to the unexpected energization or start-up of the equipment or release of hazardous energy.

state, disconnected. A state in which equipment has been physically and permanently disconnected (sometimes referred to as air-gapped) from all potential sources of hazardous energy and has no potential to internally store hazardous energy. The disconnection of all possible sources of hazardous energy must be accomplished in a manner that cannot be readily restored. Equipment in the disconnected state must be tagged or labeled with durable materials to allow workers to quickly determine with certainty that no hazardous energy is present.

state, zero energy. The lowest achievable energy state for machinery, equipment, or systems. Achieving zero energy state is unique to each system, depending on the energy sources. Generally, the zero-energy state is achieved by

- De-energizing electrical energy sources, including discharging capacitive and inductive elements (absence of voltage and current)
- Totally blocking or releasing mechanical (kinetic or potential) energy
- Allowing surface or liquid temperatures to dissipate to prevent thermal burns
- Removing all differential pneumatic or hydraulic pressure to equal atmospheric pressure

tagout. The placement of a tagout device, normally in conjunction with a lockout device, onto an energy isolating device. This is done in accordance with an established procedure to indicate that the energy isolating device and the equipment being controlled may not be operated until the tagout device is removed. (See also lockout.)

worker, affected. An employee who operates machines or equipment on which servicing or maintenance is performed under lockout, or whose job requires him/her to work in an area in which such servicing or maintenance is performed

worker, authorized. A worker who performs service or maintenance on machinery, equipment, or a system, who is qualified through appropriate training, has demonstrated proficiency in the performance of lockout, and has been assigned by his or her supervisor

worker, lead authorized. An authorized worker who is qualified to implement lockouts and who carries additional responsibility for coordinating group lockout and/or shift change regardless of the employer, occupation, crew, craft, location, or duration of the lockout. The lead authorized worker is the person in charge required for the written plan of execution as defined in NFPA 70E.

worker, qualified electrical. (See also person, qualified.)

written plan of execution. A plan that identifies a lead authorized worker and provides accountability for all workers participating in the lockout; required by NFPA 70E
zero energy verification. Confirmation of a zero energy state by test, action, or observation

zero voltage verification (ZVV). A procedure that ensures by measurement that there are no electrically live parts, that is, parts are in a zero energy state

6 References

6.1 External Requirements

The following are the external requirements that apply to this program:

- Title 8, California Code of Regulations, “Industrial Relations”, Division 1, “Department of Industrial Relations”, Chapter 4, “Division of Industrial Safety”, Subchapter 5, “Electrical Safety Orders”
 - Group 1, “Low-Voltage Electrical Safety Orders” (8 CCR 2299–2599)
 - Group 2, “High-Voltage Electrical Safety Orders” (8 CCR 2700–2989)
- Title 8, California Code of Regulations, “Industrial Relations”, Division 1, “Department of Industrial Relations”, Chapter 4, “Division of Industrial Safety”, Subchapter 7, “General Industry Safety Orders”
- National Fire Protection Association (NFPA) 70E, “Standard for Electrical Safety in the Workplace” (NFPA 70E)

6.2 Related Documents

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)

- Chapter 8, “Electrical Safety”

Other Documents

- Federal Occupational Safety and Health Administration (OSHA) Letters of Interpretation
 - February 10, 2004, “Clarification of ‘authorized’ and ‘affected’ employees and proper energy control procedures”, [1910.147(b); 1910.147(c)(4); 1910.147(c)(7)(i); 1910.147(d); 1910.147(d)(4)(i); 1910.147(f)(3)(ii); 1910.147(f)(3)]
- American National Standards Institute (ANSI) Z244.1, “Control of Hazardous Energy Lockout/Tagout and Alternative Methods” (ANSI Z244.1)
Chapter 51: Control of Hazardous Energy

General Requirements

1 Purpose

The purpose of these requirements is to prevent worker exposure to hazardous energy (such as from unexpected energization, startup, or release of stored energy) during service and maintenance of machines, equipment, or systems.

Service and maintenance include constructing, installing, setting up, adjusting, inspecting, and modifying machines, equipment, or systems. These terms are broad in scope and encompass a wide range of activities and equipment types. Service and maintenance also includes lubrication, cleaning or un-jamming of machines or equipment, and making adjustments or tool changes where lockout is necessary to prevent workers from being exposed to the unexpected energization or startup of the equipment or release of hazardous energy.

These requirements also cover administrative lock and tag, which may involve the lockout of equipment for configuration or operational purposes, but which may not be used alone to protect workers from hazardous energy.

They apply to workers and supervisors; equipment designers, custodians, and owners; LOTO inspectors; project managers, field construction and service managers, and points of contact; and related ESH program managers.

Note Control of hazardous energy is commonly referred to as CoHE, and lockout/tagout is commonly referred to as LOTO or lockout.

1.1 Exemptions

The following activities are exempt from CoHE requirements.

- Work on cord-and-plug connected equipment, in which all these conditions are met:
 - There is a single energy source.
 - All of the hazardous energy is controlled by unplugging the equipment and there is no potential for stored hazardous energy.
 - The plug remains under the exclusive control of the worker performing the servicing or maintenance.

- Hot tap operations, the use of specialized drilling equipment to tap into in-service, pressurized process piping for the purpose of attaching a mechanical or welded branch fitting, in which all these conditions are met:
– Continuity of service is essential.
– Shutdown of the system is impractical.
– Documented procedures are followed.
– Special equipment is used that will provide proven, effective protection for workers.

Permission to hot tap a process system is limited to situations in which system shutdown is impossible (such as a leaking tank or other non-isolable leak) or where hot tapping is shown to be less hazardous than shutting down and locking out the system and performing a cold tap. In other words, the decision to hot tap must be safety-based. It must be shown that, on the whole, it is safer to perform the hot tap than to shutdown, depressurize, and lock out the system.

The responsible person must prepare a job safety analysis (JSA) that substantiates the recommendation to perform the hot tap. The JSA may consider the hazards and risks associated with shutting down and depressurizing the system or loop, including installation of temporary power and other temporary equipment necessary for facility operation. The JSA must be reviewed and approved by the responsible supervisor and the CoHE program manager. If the JSA does not demonstrate that the hot tap is the lower risk path then the hot tap will not be permitted. In that case system shutdown, depressurization, and lockout are required.

– Minor tool changes and adjustments, and other minor servicing activities that take place during normal operations, provided that (a) they are routine, repetitive, and integral to the use of the equipment, and (b) the work is performed using alternative measures which provide effective personnel protection.

(See Section 2.12, “Alternative Energy Controls”, for guidance on the use of alternate measures to provide effective personnel protection.)

Service and maintenance that takes place during normal production operations requires control of hazardous energy in accordance with this program if

– A worker is required to remove or bypass a guard or other safety device, or
– A worker is required to place any part of his or her body into an area on a machine or piece of equipment where work is actually performed upon the material being processed (point of operation) or where an associated danger zone exists during a machine operating cycle.

Activities on energized electrical equipment such as diagnostics and testing that can only be performed with the circuit energized. Workers performing these activities must follow all requirements of Chapter 8, “Electrical Safety”, including safe work practices, personal protective equipment, safety analyses, work plans, and management approvals.

2 Requirements

2.1 Individual Control and Protection

The primary goal of the CoHE program is individual control over and protection from hazardous energy. The lockout procedures described below give each authorized worker personal control over the hazardous energy to which he or she otherwise would be exposed. Work on equipment may begin only after an authorized worker has placed his or her personal lock(s) on the energy isolating device(s) or group lock box. Each worker maintains control over the hazardous energy through application of his or her personal lock(s). No worker may work under another worker’s lock. It is only when all authorized workers have removed their personal locks that the equipment may be re-energized.
Important Individual control as used here is not to be confused with individual control as described in National Fire Protection Association (NFPA) 70E, “Standard for Electrical Safety in the Workplace” (2009 and prior) when a single energy isolating device is within sight and under the exclusive control of an individual performing service or maintenance but is not locked out), which is not recognized by the federal Occupational Safety and Health Administration (OSHA) as an acceptable means of control of hazardous energy and is not allowed at SLAC.

Important No worker, either SLAC or subcontractor, will attempt to start, energize, or use machinery or equipment that is locked or tagged out of service by others with LOTO lock and tag, nor will any worker attempt to defeat or remove another worker’s LOTO lock or tag. Failure to comply with these requirements will result in disciplinary action up to and including termination.

2.2 Subcontractors

The SLAC project manager, field construction manager (FCM), service manager (SM), or point of contact (POC) must ensure that the subcontractor’s affected and authorized workers understand and follow the applicable provisions of SLAC’s and the subcontractor’s CoHE programs. In all instances, any equipment that requires a lockout will first be locked and tagged by a SLAC authorized worker or operations group, then, when authorized by the subcontractor supervisor, the subcontractor’s authorized workers will apply their personal LOTO locks.

Note If the SLAC authorized worker will not perform any work under the lockout and is not the lead authorized worker, then the SLAC worker should apply an administrative lock.

Note Only SLAC qualified electrical workers are authorized to operate breakers and perform switching of electrical equipment.

Subcontractors must maintain up-to-date marked-up drawings at the job site for all construction projects. These marked-up drawings must be made available to all SLAC and subcontractor workers for their use planning lockouts in support of construction activities.

2.3 Determination and Control of Hazardous Energy

An exposure to hazardous energy, such as from unexpected energization, startup, or release of stored energy, could cause serious injury or death. (Examples of potentially hazardous energy include electrical, thermal, mechanical, hydraulic, pneumatic, chemical, and ionizing and non-ionizing radiation.) For any work that might involve such exposure, a hazard analysis is required to confirm the presence of hazardous energy and determine the sources (see Control of Hazardous Energy: Hazard Analysis Procedure). If hazardous energy is confirmed a lockout procedure must be used.

2.3.1 Exposed De-energized Electrical Parts

De-energized electrical parts that have not been locked out and verified de-energized by test in accordance with a lockout procedure must be treated as energized. Only individuals who participate in the lockout in accordance with these procedures are protected from hazardous energy. Workers not participating in the lockout must treat de-energized electrical equipment as energized and remain outside the limited approach boundary and arc flash protection boundary of exposed electrical parts.
2.3.2 Control Circuit Devices

Control circuit devices such as push buttons, selector switches, and interlocks are not energy isolating devices and may not be used as a means for de-energizing circuits or equipment for the purpose of lockout. Interlocks for electric equipment may not be used as a substitute for lockout tag out procedures. In particular, personnel protection systems (PPS) and door switch interlocks (on panels, cabinets, or equipment) are not acceptable as a substitute for a lock and tag for service or maintenance.

2.3.3 Mechanical Movement

Workers must never use their own bodies to stop moving equipment parts (for example, rotating gears, fans, fan belts, pulleys, flywheels, and rolling or pressing components). The motion must be allowed to stop on its own. Parts that could move and cause injury must be blocked or braced.

On multiple fan systems, all fans must be locked out to prevent windmilling. If not all fans can be locked out, a piece of four-by-four wood or heavy-duty cable or chain and lock must be used to prevent movement of the locked-out fan(s).

2.3.4 Electrical Energy Isolation Devices

Wherever possible, workers must verify visually that all blades of electrical disconnecting devices are fully open and that drawout-type circuit breakers are open and withdrawn to the fully disconnected position. Rackable motor control center (MCC) buckets must be fully withdrawn with the breaker open.

2.3.5 Documentation for Lockout Planning

Drawings and documents are a primary resource for workers in planning lockouts. These drawings and documents must be maintained accurate and up-to-date by the employer (the SLAC departments responsible for the document content). When up-to-date drawings and documents are not available the employer is responsible for providing to workers an equally effective means of locating, isolating, and locking out all sources of potentially hazardous energy. Workers must notify their supervisor or line manager if they have concerns regarding the accuracy of drawings and documents used for planning lockouts. The supervisor or manager must address these concerns before implementation of the lockout.

See Section 2.2 for the requirement to maintain up-to-date marked up drawings at construction job sites for use by workers in planning lockouts. Workers contact the field construction manager, project manager, or project engineer to obtain access to the marked-up drawings.

2.3.6 Safety-related Maintenance

Safety-related maintenance is maintenance that preserves or restores the condition of electrical equipment for the safety of employees who work where exposed to electrical hazards. Electrical equipment must be maintained in accordance with manufacturers’ instructions or industry-consensus standards to reduce the risk of failure and the subsequent exposure of employees to electrical hazards.

Workers and their supervisors must consider the condition of maintenance of electrical equipment before operating the equipment. Improper or inadequate maintenance can result in increased equipment failure rates, including increased opening time of overcurrent protective devices, thus increasing arc-flash incident
energies. Where equipment is not properly maintained, the worker’s personal protective equipment may not provide adequate protection from arc-flash hazards.

The employer (the SLAC departments responsible for equipment maintenance) is responsible for establishing maintenance programs that preserve or restore the condition of equipment to a state that does not present an undue hazard to workers during equipment operation. Workers are responsible to notify their line manager or supervisor if they have concerns regarding the maintenance status of equipment to be operated when implementing lockouts. The manager or supervisor must address these concerns before implementation of the lockout.

2.4 Lockout Types and Procedures

Lockouts are either simple or complex, and requirements vary accordingly.

2.4.1 Simple Lockout

A simple lockout is when the machinery, equipment, or system to be worked on meets all the following conditions:

- Has a single source of hazardous energy that can be readily identified, isolated, and locked out; and that single source controls all hazards, with no potential for stored energy
- Involves only one department, group, craft, or employer, and does not involve a shift change
- Contains no potential to release a hazardous material

For simple lockouts, the simple lockout procedure is required (see Control of Hazardous Energy: Simple Lockout Procedure), but an equipment-specific lockout procedure (ELP) or a group lockout procedure may be used if desired (for example, if more than one worker from the same crew is involved).

Note The simple lockout procedure may be used for locking out multiple molded case breakers in a panelboard with a single cable-type lockout device.

2.4.2 Complex Lockout

A complex lockout is when one or more of the following conditions exist:

- Multiple energy sources
- Multiple crews
- Multiple crafts
- Multiple locations
- Multiple employers
- Multiple disconnecting means
- Particular sequences of operation are necessary to establish the locked-out condition safely
- Work involves a shift change
At SLAC, complex lockout may only be performed under an ELP (Section 2.4.3) or a group lockout procedure (Section 2.4.4). The general lockout procedure may not be used for complex lockout.

Note The general lockout procedure may be used for locking out multiple molded case breakers in a panelboard with a single cable-type lockout device.

2.4.2.1 Written Plan of Execution

Following National Fire Protection Association (NFPA) 70E, “Standard for Electrical Safety in the Workplace” (NFPA 70E)[1], a complex lockout requires a written plan of execution that identifies a lead authorized worker and provides accountability for all workers participating in the lockout. For complex lockout under an ELP, the ELP itself with a complex lockout permit constitutes the written plan of execution; under a group lockout procedure, the procedure with an energy isolation plan (EIP) and a complex lockout permit constitutes the written plan of execution.

Complex Lockout Permit

A permit is required for all complex lockouts. The permit is used to identify the lead authorized worker and communicate the state of the lockout to all workers (see Control of Hazardous Energy: Complex Lockout Permit[2] for a recommended template). The permit also provides accountability of all persons working under the lockout.

The identity of the lead authorized worker must be recorded on the complex lockout permit. When the lockout is complete and the equipment is safe for work the lead authorized worker signs the permit and, if a group lockbox used, applies a group lockout master lock and orange master lock tag to the group lockbox. Workers sign the complex lockout permit and affix their personal lock(s) to the energy isolating devices or, if used, the group lockbox, before beginning work.

Upon completion of work the workers sign off the permit and remove their personal lock(s) from the energy isolating devices or group lockbox. After all workers are signed off and locked off the lead authorized worker may lock off and the system may be restored.

2.4.2.2 Roles and Responsibilities

Lead Authorized Worker

Complex lockouts require designation of a lead authorized worker. The lead authorized worker (who must be an authorized worker) carries responsibility for the entire group, including addressing worker concerns before work begins. The lead authorized worker must be knowledgeable in both the equipment to be locked out and the work scope to be performed.

Note A member of the group performing the work is not always the best choice for lead authorized worker. In some cases a member of the owning or custodial group may be the best choice, even though that group is not involved in the hands-on work. The key requirement is that the lead be knowledgeable in both the work scope and the equipment. Any of the following may be a good choice: work group member; custodial group member; operations group or operations group member; area manager; field construction manager; project engineer; system engineer; ACC/SPEAR3 operator; safety coordinator.

Note For complex lockouts involving only one worker, that worker is the de facto lead authorized worker.
For an ELP, the equipment custodian, in consultation with the responsible manager or supervisor, designates the lead authorized worker. For a group lockout procedure, the responsible manager or supervisor designates the lead.

The lead authorized worker will
- Ensure a written plan of execution is developed and followed
- Be accountable for safe execution of the lockout
- Address worker concerns before commencing work
- Coordinate multiple work groups and work scopes
- Provide continuity of protection (see Section 2.4.2.4) for all workers for the duration of the lockout
- Ensure each authorized worker 1) affixes a personal lock to the group lockout device, group lockbox, or comparable mechanism before beginning work, and 2) removes those devices when finished working on the machine or equipment being serviced or maintained

Authorized Worker

Each authorized worker must review the energy isolation steps in the ELP or EIP. Worker concerns must be addressed before beginning work. Each worker has the right to walk down the energy isolation points to confirm proper energy isolation before beginning work. The worker then signs the complex lockout permit and affixes his personal lock(s) to the energy isolating devices or, if used, the group lockbox or multi-lock hasp, before beginning work. The worker should remain locked on until his work is complete.

Upon completion of work the worker signs off the permit and removes his personal lock(s) from the energy isolating devices or group lockbox. After all workers are signed off and locked off the lead authorized worker may lock off and the system may be restored.

For ELPs, any authorized worker may implement an ELP if the equipment custodian consents. The equipment custodian has the option to require that authorized workers be individually qualified and listed by name on a particular ELP if it is unusually complex.

Authorized workers must never attempt to start, energize, or use machinery, equipment, or systems that have been locked out by others, nor attempt to defeat or remove another worker’s LOTO lock or tag.

Affected Worker

An affected worker is one who operates machines or equipment on which servicing or maintenance is performed under lockout, or whose job requires him/her to work in an area in which such servicing or maintenance is performed.

Affected workers must be notified before equipment is locked out and after the lockout is removed.

Affected workers must never attempt to start, energize, or use machinery, equipment, or systems that have been locked out by others, nor attempt to defeat or remove another worker’s LOTO lock or tag.

Operations Group

Members of an operations group may establish energy isolation in accordance with an ELP or group lockout procedure for systems under their control. Energy isolation devices are locked out with operations
locks. *Operations locks* are a set of red locks owned by a department or group that are used exclusively for an ELP or group lockout procedure and for no other purpose.

When an ELP or group lockout procedure is implemented by an operations group, the functions and responsibilities of the lead authorized worker may be transferred to the operations group. When this is the case the operations group places the group lockout master lock and orange master lock tag on the group lockbox (see 2.4.2.3, “Group Lockbox”, and 2.10.5, “Group Lockout Master Lock”). The operations group must designate an on-shift worker to perform lead authorized worker functions whenever work is in progress under the lockout. Authorized workers working under the lockout must be notified of this designation.

2.4.2.3 Group Lockbox

Group lockboxes may be used for either simple or complex lockouts; the following describes their use for complex lockouts. For simple lockouts, a permit and sign on/off by each authorized worker are not required.

Each energy isolating device must be locked. Two methods are available for lockout of individual energy isolating devices: (1) the lead authorized worker’s personal locks are applied to each device; or (2) operations locks are applied to each device.

For both methods, if using a group lockbox the key for each lock is placed in the group lockbox.

Each lock on each energy isolating device must be accompanied by a tag that identifies and provides contact information for the lead authorized worker or operations group applying the lock and tag, and for group lockout procedures, a unique identifier for the group lockout (see Section 2.10, “Lockout / Tagout Equipment”).

Once energy isolation, including zero energy verification, is complete, a group lockout master lock and orange master lock tag are applied to the group lockbox. The master lock provides continuity of protection for all workers. The master lock and orange master lock tag are applied before any authorized workers lock on to perform work under the lockout and must remain in place until all work is complete and all authorized workers have removed their personal locks and tags from the group lockbox. (See Section 2.4.2.4, “Continuity of Protection.”)

The master lock must be keyed differently from the energy isolating device locks. A master lock may be a lead authorized worker personal lock or an operations lock (see Section 2.10, “Lockout / Tagout Equipment”).

- When the master lock is a lead authorized worker personal lock, the key must remain under the exclusive control of the lead authorized worker. The lead authorized worker applies the master lock to the group lockbox whether or not he or she will actually be in the hazard zone of the equipment during service or maintenance.
- When the master lock is an operations lock, the key(s) to the master lock must remain under exclusive control of the operations group members.

After the master lock and orange master lock tag are applied to the group lockbox, authorized workers then sign on the complex lockout permit and lock on to the group lockbox before performing any work. Each worker who will perform work under the lockout must sign on and lock on the group lockout.
Alternative to Group Lock Box

A lockout involving only a few energy isolating devices and a few workers may be performed using multi-lock hasps in lieu of a lockbox. If hasps are used then a hasp should be placed on each energy isolating device, and each worker must apply a personal lockout/tagout lock on each hasp. To ensure continuity of protection, the lead authorized worker must be the first to lock on each hasp, and the last to lock off each hasp after work is complete.

2.4.2.4 Continuity of Protection

The lead authorized worker must be the first to lock on and the last to lock off the energy isolating devices called out in the ELP or EIP, and, if used, the group lockbox or multi-lock hasp, with the following two exceptions:

1. Authorized workers may lock on to the energy isolating devices or group lockbox to perform activities associated with establishing the lockout, such as zero voltage verification.

2. An administrative lock and tag may be applied to the energy isolating devices or group lockbox for the purpose of configuration control. Whenever an administrative lock and tag is used, the lead authorized worker retains responsibility for the integrity of the lockout, including re-verifying proper energy isolation if necessary before placing the master lock and orange master lock tag on the group lockbox.

For either exception, no work may be performed under the lockout until the lockout is complete and, for group lockout, the group lockout master lock and orange master lock tag are applied to the group lockbox.

For work across multiple shifts a lead authorized worker must be designated for each shift. All authorized workers on shift must be informed of this designation. Oncoming lead authorized workers must apply their own lock(s) to the energy isolating devices or, if used, the group lockbox. The off-going lead authorized worker will communicate with the oncoming lead authorized worker to ensure proper coordination of work scopes and work groups across multiple shifts. Oncoming lead authorized workers must stay locked on the energy isolating devices or, if used, the group lockbox until work on their shift has been discontinued, or until their lead duties have been transferred to another lead authorized worker.

2.4.2.5 System Restoration

System restoration must conform to Section 2.7, “Release from Lockout / Tagout“. The sequence of steps to restore equipment to service should proceed as described in the ELP or, for a group lockout procedure, in reverse sequence listed in the EIP. If alternate sequencing is desired then a job-specific restoration plan must be prepared by a knowledgeable worker who is familiar with the equipment and associated hazards. System restoration is coordinated by the lead authorized worker or operations group members.

2.4.3 Equipment-specific Lockout Procedure

An equipment-specific lockout procedure (ELP) is typically prepared for standalone equipment or equipment assemblies that require lockout of multiple energy sources. A single ELP may be used for multiple identical equipment assemblies. An ELP may be used for simple or complex lockouts.

Note For large, complicated or system-level lockouts that involve many energy isolation points, multiple work groups or employers, or multiple work locations, a group lockout procedure is typically prepared.
2.4.3.1 Required Elements

An ELP must include the following elements (see Control of Hazardous Energy: Equipment-specific Lockout Procedure (ELP) Template for a recommended template):

1. Concurrence/approval/validation: the name, title, and date of all parties who approved, tested, or revalidated the procedure
2. Procedure name, scope, and purpose
3. Equipment: complete description (model, serial number, property control number, et cetera) and location
4. Equipment custodian and the custodian(s) of any associated/affected equipment: name and contact information
5. Potentially hazardous energy sources and types (see Control of Hazardous Energy: Hazardous Analysis Procedure): include all sources, such as electrical, thermal, mechanical, hydraulic, pneumatic, chemical, and ionizing and non-ionizing radiation
6. Isolation device associated with each energy source: identity and location and if applicable schematics and/or photos
7. Preparation and notification: steps to prepare the work area, notify the equipment custodian, and all affected workers of the lockout (and the equipment custodian(s) of any associated or affected equipment)
8. Equipment shutdown procedure: for placement, removal, and transfer of lockout and/or tagout devices and the responsibility for them
9. Energy source(s) isolation: description of method(s)
10. Stored energy dissipation: description of method(s)
11. Zero energy verification, including verification of non-operation, and zero voltage verification (ZVV) (if required): description of method(s) for testing (see Control of Hazardous Energy: Zero Voltage Verification Procedure)
12. Equipment testing: if testing is required during or after service/maintenance, description of a safe testing procedure.

 Note If any part of the lockout is removed for testing or other reasons, zero energy verification, including ZVV, will be required again once the unlocked equipment is re-locked/re-tagged.

13. System restoration steps: for restoring system when work is complete; must comply with Section 2.7, “Release from Lockout / Tagout”
14. Designated authorized workers who are pre-approved to implement the ELP, if applicable: names
15. A complex lockout permit (sign on/sign off form) to record the identity of the lead authorized worker and to provide accountability of all persons working under the ELP

 Note If an existing ELP does not include a complex lockout permit, a standalone permit must be used (see Control of Hazardous Energy: Complex Lockout Permit for a recommended template).

ELP steps must be performed in the order stated in the procedure, unless alternate sequencing is specifically addressed in the ELP.
2.4.3.2 Development and Approval

The equipment custodian writes or, in consultation with the responsible manager or supervisor, ensures that a knowledgeable worker familiar with the equipment is designated to write an ELP and another knowledgeable worker is designated to be the lead reviewer. The ELP preparer and lead reviewer must be current in their training. For ELPs involving research and development or experimental equipment the ELP author and lead reviewer must be competent persons as defined in this chapter. Each ELP must be reviewed and approved before it is implemented the first time.

2.4.3.3 Annual Revalidation

Every ELP must be revalidated by a LOTO inspector once per year unless an ELP has not been used within the past 12 months. In this case, the ELP must be revalidated at the next use. In addition,

- The LOTO inspector must be an authorized worker
- If the ELP is accurate, the revalidation must be documented on its approval and validation page. If the ELP is found to be inaccurate, the inspector must forward a redlined copy to the equipment custodian for resolution.

Note If an ELP is used during an authorized worker certification, the ELP may be validated at that time (see Control of Hazardous Energy: Authorized Worker Certification Form).

2.4.4 Group Lockout Procedure

A group lockout procedure is typically used for large, complicated, or system-level lockouts that involve many energy isolation points, multiple work groups or employers, or multiple work locations, although it may also be used for simple lockout. (See Control of Hazardous Energy: Group Lockout Procedure.)

Under group lockout a lead authorized worker coordinates multiple authorized workers and work scopes to be worked under the group lockout.

Note For standalone equipment or equipment assemblies that require lockout of multiple energy sources, an ELP is typically prepared.

2.4.4.1 Energy Isolation Plan (EIP) Development

Group lockout energy isolation must be carried out under a written energy isolation plan (EIP) that is developed in accordance with Control of Hazardous Energy: Group Lockout Procedure. The plan must include

- A unique group lockout identifier that will be applied to all associated forms and tags
- A separate step for locking and tagging each individual energy isolating device. Each device must have its own step.
- A separate step for each individual zero energy verification, verification of non-operation, and release of stored energy. Each verification/release must have its own step.
- Drawings or sketches that identify energy isolating devices, if needed to assist authorized workers in understanding the EIP
The responsible manager or supervisor, in consultation with the equipment custodian, must designate a knowledgeable worker familiar with the equipment and work scope to prepare the EIP and a second knowledgeable worker to review it. EIP preparers and lead reviewers must be current in the required training. In some cases a member of the owning or custodial group may be the best choice to prepare or review an EIP, even though that group may not be involved with the servicing or maintenance activities.

For a recommended EIP template, see Control of Hazardous Energy: Group Lockout Energy Isolation Plan Template. An EIP may be reused but it must be reviewed and approved for each use.

Energy isolation steps must be implemented in the order stated on the EIP unless alternate sequencing is specifically addressed in the plan.

2.4.5 Zero Energy Verification

The zero energy state is the lowest achievable energy state for machinery, equipment, or systems. Achieving zero energy state is unique to each lockout, depending on the equipment and energy source. Generally, the zero energy state is achieved by

- Attempting to start the equipment using normal operating controls to check that the equipment does not start or become energized (verification of non-operation).
 - Return the operating control(s) to the NEUTRAL or OFF position before proceeding with servicing or maintenance work
- De-energizing electrical energy sources, including discharging capacitive and inductive elements (absence of voltage, current, and stored electrical energy). See Section 2.4.5.1 for zero voltage verification.
 - Where the potential for re-accumulation of electrical energy exists, apply grounding devices such as ground hooks or grounding clips and wire
- Totally blocking or releasing mechanical (kinetic or potential) energy, including movement such as fan windmilling and equipment with stored spring energy (such as switchgear breakers)
- Allowing surface or liquid temperatures to moderate to prevent thermal burns
- Removing all differential pneumatic or hydraulic pressure to equal atmospheric pressure
 - Use temporary or permanently installed pressure indicators to confirm zero pressure
 - When blank flanges are used, install a fitting to attach a pressure indicator to the blank flange if no other pressure indicator is available within the lockout boundary
 - Always include a locked open vent valve or drain valve (or both) in the lockout procedure to prevent re-accumulation of pressure while the lockout is in place

Note: If any part of the lockout is removed for testing or other reasons, zero energy verification, including ZVV, will be required again once the unlocked equipment is re-locked/re-tagged.

2.4.5.1 Zero Voltage Verification

When work is to be performed within the limited approach boundary or arc flash protection boundary of exposed electrical parts a zero voltage verification must be performed. Zero voltage verification is performed after verification of non-operation (Section 2.4.5).
A qualified electrical worker using an appropriately rated meter must test all circuit elements and electrical parts to which workers may be exposed. The qualified electrical worker must lock on to the lockout before performing any tests. (See Control of Hazardous Energy: Zero Voltage Verification Procedure).

In addition to the zero voltage verification, electrical workers should use a proximity tester or other voltage testing device to periodically confirm absence of voltage at the work location (that is, liberal use of “test before touch”) including after pauses in work or if the work site has been left unattended. Non-electrical workers may request the support of qualified electrical workers to perform these tests. Electrical workers must oblige these requests.

2.5 Pauses in Work

Authorized workers should remain locked on to a lockout on until their work is complete. The single key for each personal lock must remain in the possession of the worker who placed it. When work continues beyond one work day, each worker must verify that his or her lock is still in place before beginning work each day. If a lock is removed for any reason, the worker must re-verify proper energy isolation before locking on and resuming work.

2.6 Lock and Tag Removal for Testing

An authorized worker may temporarily remove his or her lock(s) and tag(s) for the purpose of testing machines, equipment, or a process, or to carry out any other necessary sub-task such as positioning equipment. When locks are removed for testing the lockout is no longer intact and no work may be performed. All workers must remain clear of the equipment hazard zone.

After completing testing or positioning, the authorized worker must implement safe de-energization and zero energy/voltage verification and replace locks and tags before continuing with the original task.

For complex lockouts, the lead authorized worker must coordinate lock removal for testing, and restoration of the lockout following testing. All workers must be informed of the test activities, and no work may be performed until the lockout is re-established.

2.7 Release from Lockout / Tagout

The following equipment restoration steps apply to all lockouts:

- Check the machine/equipment and surrounding area to ensure that non-essential objects have been removed, guards have been reinstalled, and that the machine/equipment is operationally intact
- Verify machine/equipment controls are in the NEUTRAL or OFF position
- Verify that all affected workers and other authorized workers are out of harm’s way
- Remove locks and tags and prepares to restart the machine/equipment
- Before restarting machinery/equipment, notify affected workers and the equipment custodian, equipment owner, or system owner, as applicable, that work is complete, that locks and tags have been removed, and that normal operations may proceed
The lead authorized worker coordinates these steps out for complex lockouts; the authorized worker for simple.

2.8 Alternative Process for Lockout / Tagout Device Removal

The only person authorized to remove a red personal lock and tag is the worker who applied it. If the worker is not available and is unable to return to site to remove the lock, the lock may be cut off and removed with the concurrence of the worker’s supervisor or manager. The following steps must be taken (see Control of Hazardous Energy: Alternative Authorization for Removing Locks and Tags Form):

1. Verify that the worker who installed the lock is not on the site or may not return to the site
2. Make all reasonable efforts to contact the worker
3. Record in writing all the circumstances and reasons for cutting off the lock
4. Determine that it is safe to energize
5. Cut off the lock
6. Make sure that worker is informed that the lock has been removed before he/she resumes work at the job site

Note These restrictions do not apply to removing administrative locks and tags, which are neither red nor used for worker protection (see Section 2.11, “Administrative Lock and Tag Control”).

2.9 Tagout Only

In some cases lockout may not be possible because energy isolation devices are not lockable. If an energy isolation device is not lockable, *tagout only* may be used if all the following requirements are satisfied:

- Tagout-only tags must be attached at the same location that the lockout device would have been attached.

- In demonstrating that the level of safety achieved using tagout only is equivalent to the level of safety obtained by using full lockout, the authorized person using tagout only must implement at least one additional safety measure at each energy isolation location to reduce the likelihood of inadvertent energization by doing one or more of the following:
 - Remove and tag an additional isolating circuit element (for example, fuses)
 - Lift, safe-off, and tag circuit power leads
 - Open and tag an extra disconnecting device
 - Remove and tag a valve handle
 - Post a safety guard at the energy isolating device to ensure the device remains in the isolation position. The safety guard must have no other duties and must not leave his station for any reason.

- Tagout-only tag attachment means must be of a non-reusable type, attachable by hand, self-locking, and non-releasable, with a minimum unlocking strength of no less than 50 pounds and having the general design and basic characteristics of being at least equivalent to a one-piece, all environment-tolerant nylon cable tie.
2.10 Lockout / Tagout Equipment

2.10.1 General Requirements

Important: Workers must never depend upon another worker’s lock(s), and must always apply their personal lock(s) to the energy isolation device(s) or group lockbox.

All necessary lockout/tagout equipment must be provided by the authorized worker’s employer.

Depending on the lockout/tagout requirements for specific circumstances, required supplies may include a lock, hasp, tag, tag attachment means, chains, wedges, key blocks, adapter pins, self-locking fasteners, or other hardware. Adhesive lock labels may be used subject to the requirements of Section 2.10.6, “Lockout Tags and Adhesive Lock Labels”.

Lockout devices, tags, and adhesive lock labels must meet the following requirements:

- Lockout locks and hardware and lockout tags and adhesive lock labels must be capable of withstanding the environment to which they are exposed for the maximum period of time that exposure is expected.
- Lockout locks and hardware must be substantial enough so that they cannot be removed without the use of excessive force or unusual techniques (such as bolt cutters or other metal cutting tools).
- Lockout tags, including their means of attachment, must be substantial enough to prevent inadvertent or accidental removal.
- Lockout tags and adhesive lock labels must be constructed and printed so that exposure to weather conditions or wet and damp locations will not cause the tag or label to deteriorate or the message on the tag or label to become illegible.
- Lockout tags and adhesive lock labels must not deteriorate when used in a corrosive environment, such as in an area where acid or alkali chemicals are handled or stored.

2.10.2 Personal Lock

Authorized worker personal locks must:

- Be red (SLAC authorized workers) or otherwise be uniquely identified (subcontractor authorized workers)
- Have only one key, and that key must remain in control of the worker (multiple locks with a single unique key are permitted)
- Not be used for any purpose other than lockout/tagout

2.10.3 Operations Lock

An operations lock differs from a personal lock in that they are under the exclusive control of operations group members.

Operations locks

- Must be red
- May be marked or labeled to identify the owning group
Must not be used for any purpose other than lockout/tagout
- If used for complex lockout energy isolation, must have only one key
- If used as group lockout master locks, may have one or more keys, all of which are in the control of the group members

2.10.4 Lead Authorized Worker Lock

Lead authorized worker locks are personal locks, and may be used by a lead authorized worker for group lockout energy isolation. When lead authorized worker locks and a group lockbox are used for group lockout energy isolation, the key for each lock must be placed in the group lockbox.

2.10.5 Group Lockout Master Lock

When a group lockbox is used, a group lockout master lock and orange master lock tag (see 2.10.6) are placed on the group lockbox to signify that energy isolation is complete and that the system or equipment is ready for maintenance or servicing.

Group lockout master locks must be red. When energy isolation is complete and the lockout has been established, the master lock is the first lock on and the last lock off the group lockbox. The master lock provides continuity of protection for all workers performing work under the group lockout. The master lock must be keyed differently from the locks used for energy isolation. The master lock may be a lead authorized worker personal lock or an operations lock.

2.10.6 Lockout Tags and Adhesive Lock Labels

All lockout locks must be accompanied by a lockout tag or adhesive lockout lock label that identifies the authorized worker who applied the lock.
- All lockout tags and lock labels must have a white background with black letters and must include a red, white, and black ANSI danger symbol.

Exception The group lockout master lock tag has an orange background (see Control of Hazardous Energy: Tag Templates).
- Lockout tags and lock labels must state explicit instructions such as DO NOT OPERATE, DO NOT START, DO NOT ENERGIZE, DO NOT REMOVE, MY LIFE IS ON THE LINE or similar warning of the hazardous condition.
- For personal locks, including individual workers working under group lockout or an ELP, a lockout tag or lockout lock label that identifies the worker and worker contact information is required.

Note Worker name and contact information may be on an adhesive label or engraved on one side of the lock with an adhesive label containing the danger symbol and required wording on the other side.
- Group lockout tags affixed to energy isolating device locks must
 - Contain the words GROUP LOCKOUT or GROUP LOTO

1 This is the only red lock in the SLAC CoHE program that may have more than one key.
Include a unique group lockout identifier
Include the name and contact information of the lead authorized worker or operations group

- Group lockout master lock tags must
 - Have an orange background with black lettering and contain a red, white and black ANSI danger symbol
 - Contain the words GROUP LOCKOUT MASTER LOCK or GROUP LOTO MASTER LOCK
 - Include a unique group lockout identifier
 - Include the name and contact information of the lead authorized worker or operations group who applied the lock

Note Group lockout tags may be used for ELPs involving multiple workers.

For tag templates, see Control of Hazardous Energy: Tag Templates.

2.11 Administrative Lock and Tag Control

The purpose of administrative lock and tag control is to allow workers or groups to control energy isolating devices for purposes other than the control of hazardous energy while servicing and maintenance is performed. Administrative lock and tag is typically used for exercising configuration or operational control.

Important Never rely on administrative lock and tag control when lockout/tagout for hazardous energy control is required. For servicing and maintenance of machines, equipment, or systems formal lockout is always required.

2.11.1 Requirements

Administrative lock and tag control may be used by individual workers or by groups responsible for control and maintenance of equipment, machinery, or systems. Administrative lock and tag control is commonly used when

- Equipment must be shut down because it is defective (further use may cause damage or equipment failure)
- A particular configuration must be maintained
- Equipment operation may result in undesirable consequences
- Special training or authorization may be required to use the equipment
- Newly installed equipment or systems have not yet been fully tested or approved for use
- Equipment has been removed from service and its energy source is locked off

Note Contact the electrical safety officer for guidance on the use of administrative lock and tag to mitigate hazardous energy in out-of-service equipment. In particular, note that administrative lock and tag must not be used where one end of a cable or piping branch line has been disconnected from equipment, and the other end is connected to a source of hazardous energy.
Another use of administrative lock and tag involves locking out equipment by a SLAC worker so that a subcontractor who will be performing work can apply the required personal lock and tag for control of hazardous energy (see Section 2.2, “Subcontractors”). If the SLAC worker will not perform work or be within the hazard zone of the equipment and is not the lead authorized worker, an administrative lock and tag should be used in lieu of a lockout/tagout personal lock and tag.

These two examples illustrate this use:

- In preparation for subcontractor service to a chiller, SLAC Facilities and Operations Division personnel shut down the chiller and apply administrative lock and tag to the chiller’s energy isolating devices. The subcontractor’s employees then apply their personal lock and tag before beginning work.
- In preparation for subcontractor installation of new electrical equipment, a SLAC qualified electrical worker de-energizes the circuit, applies a personal LOTO lock and tag, and performs zero voltage verification. The SLAC worker then replaces their personal LOTO lock and tag with an administrative lock and tag. The subcontractor’s electricians then apply their personal LOTO locks and tags before beginning work.

2.11.2 Locks

An administrative lock may be any color but red and may have more than one key. Administrative locks may be used by an operations group, such as SLAC Facilities and Operations or Accelerator Operations, with keys accessible to multiple group members.

2.11.3 Tags

Tags used for administrative lock and tag are informational, and must not resemble red, white, and black danger tags used for control of hazardous energy.

Administrative control tags

- Must not use the lockout/tagout DANGER red, white, and black graphic. They may use DO NOT ENERGIZE, ADMINISTRATIVE LOCK AND TAG, NOTICE, INFORMATION, or similar wording, and may include department-specific language such as KTL CONTROL TAG.
- Should be distinguishable by their color in that they do not resemble the white/black/red danger tag used for lockout/tagout; blue and white is a good choice
- Should be standard size
- Must include the following information:
 - Department/organization/worker name
 - Telephone number/contact information for responsible department or person(s)
- Durable adhesive lock labels or other durable lock labeling methods may be used in lieu of tags provided the labels provide the information required above.

For tag templates, see Control of Hazardous Energy: Tag Templates.
2.12 Alternative Energy Controls

Alternative energy control requirements apply if the equipment must be energized to perform the required servicing task. When alternative energy controls are used, lockout/tagout is not required for the control of hazardous energy.

For example, in laser work, alignments, creating new beam paths, and replacing optics are servicing tasks performed with lasers partially or fully energized. These tasks require the use of alternative energy controls.

These controls must use the necessary combination of engineering controls (such as barriers and fixed guards, interlocks for moveable equipment guard devices, key control), warning and alert systems, administrative controls, and personal protective equipment to achieve effective control of hazardous energy protection for workers. These controls must be documented and reviewed and approved as follows:

- Electrical equipment: by the electrical safety officer (ESO). See Chapter 8, “Electrical Safety”, in particular the requirements for preparation, review, and approval of electrical work plans (EWPs) and energized electrical work permits (EEW).
- Radio frequency (rf) systems: by the non-ionizing radiation program manager. See Chapter 50, “Non-Ionizing Radiation”.
- Ionizing radiation: by the radiation safety officer (RSO). See Chapter 9, “Radiological Safety”.
- Machine shop / fabrication areas. See Chapter 25, “Machine and Portable Tools”.

2.13 Out-of-Service Equipment

Out-of-service equipment should be placed in a safe state that is economical to monitor and maintain for an extended period, until the eventual decommissioning of the equipment. Maintaining equipment in a safe state ensures that potential hazards to workers, the public, and the environment are minimized. Elimination or mitigation of hazardous energy in out-of-service equipment should occur as soon as practicable following removal of equipment from service.

Contact the electrical safety officer for guidance on the use of administrative lock and tag to mitigate hazardous energy in out-of-service equipment.

3 Procedures, Forms, and Templates

The following are required procedures:

- **Control of Hazardous Energy: Hazard Analysis Procedure** (SLAC-I-730-0A10C-002). Describes process for determining hazardous energy sources and provides thresholds and other references.
- **Control of Hazardous Energy: Simple Lockout Procedure** (SLAC-I-730-0A10C-003). Describes process for performing a simple lockout.
- **Control of Hazardous Energy: Group Lockout Procedure** (SLAC-I-730-0A10C-006). Describes process for conducting a complex, group lockout.

Control of Hazardous Energy: Authorized Worker Certification Procedure (SLAC-I-730-0A10C-005). Describes process for certifying authorized workers on assigned lockout procedures; also covers revalidation of equipment-specific lockout procedures (ELPs).

The following are required forms:

- Control of Hazardous Energy: Alternative Authorization for Removing Locks and Tags Form (SLAC-I-730-0A10J-002). Form for authorizing removal of a personal red lock and tag if the person who applied it is not available and is unable to return to site.

The following are recommended templates. Equivalent forms may be used:

- Control of Hazardous Energy: Equipment-specific Lockout Procedure (ELP) Template (SLAC-I-730-0A10J-001). Template for creating an equipment-specific lockout procedure (ELP); lists required elements of an equipment-specific lockout procedure (ELP).
- Control of Hazardous Energy: Group Lockout Energy Isolation Plan Template (SLAC-I-730-0A10J-005). Template for creating group lockout energy isolation plans (EIPs); lists required elements of an energy isolation plan.
- Control of Hazardous Energy: Complex Lockout Permit (SLAC-I-730-0A10J-006). Form for documenting lead authorized worker and sign on and sign off of workers for complex LOTO.

4 Recordkeeping

The following recordkeeping requirements apply for these requirements:

- See specific procedures.

5 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)

- Chapter 51, “Control of Hazardous Energy”
- Chapter 2, “Work Planning and Control”
 - Work Planning and Control: Job Safety Analysis Form
- Chapter 8, “Electrical Safety”
- Chapter 9, “Radiological Safety”
- Chapter 10, “Laser Safety”
- Chapter 25, “Machine and Portable Tools”
Other Documents

- National Fire Protection Association (NFPA) 70E, “Standard for Electrical Safety in the Workplace” (NFPA 70E)
The purpose of this form is to attain authorization to remove a personal red lock and tag intended to control hazardous energy if the person who applied it is not available and is unable to return to site. (See Control of Hazardous Energy: General Requirements [SLAC-I-730-0A10S-004]).

Note This form does not apply to removing administrative locks and tags, which are neither red nor used for worker protection. An administrative lock or tag must be removed by one or more operations staff members who control the key(s).

<table>
<thead>
<tr>
<th>Request (completed by requester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasons/circumstances for removing lock/tag</td>
</tr>
</tbody>
</table>

Requester (authorized worker requesting removal of lock/tag)

<table>
<thead>
<tr>
<th>Phone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
</tr>
</tbody>
</table>

Owner (authorized worker who applied lock, named on lock/tag)

<table>
<thead>
<tr>
<th>Dept / group</th>
<th>Phone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (building/room)</td>
<td></td>
</tr>
</tbody>
</table>

| Description of machinery, equipment, or system |

Efforts made to confirm availability of owner (completed by requester or authorizing supervisor)

<table>
<thead>
<tr>
<th>Efforts made to confirm availability of owner</th>
</tr>
</thead>
</table>

Authorization (completed by authorizing supervisor or by requester if approval by telephone)

<table>
<thead>
<tr>
<th>Authorizing supervisor (supervisor or manager of employee whose lock is to be removed)</th>
<th>Dept / group</th>
<th>Phone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date approved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closeout

<table>
<thead>
<tr>
<th>Date lock/tag removed (completed by requester)</th>
<th>Requester initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efforts made to inform lock owner that the personal lock/tag was removed (completed by authorizing supervisor)</td>
<td>Authorizing supervisor initial</td>
</tr>
</tbody>
</table>

Authorizing supervisor to keep completed form for 12 months.
These tag templates meet federal Occupational Safety and Health Administration (OSHA) requirements for uniformity. For additional information on lockout/tagout equipment and how to attach a tag, see Control of Hazardous Energy: General Requirements (SLAC-I-730-0A10S-004).

1 Personal Lockout Tag

Follow these steps to create a personal lockout tag:

1. Type your identifying information into the text boxes. The minimum required information is your name and contact information such as your four digit extension.
2. Optional: insert your online SLAC ID photo or other suitable identifying image. Size it to fit.
3. Include an explicit warning such as DO NOT OPERATE, DO NOT START, DO NOT ENERGIZE or similar wording.
4. Print the tag in color, fold, cut, and laminate. Use a hole punch to make a hole as indicated. Slip the lock through this hole when using the tag.

My life is on the line.

Photo Here (optional)

Name:
Dept:
Ext: Cell:
Pager:

SEE OTHER SIDE
2 Group Lockout Energy Isolation Tag

Follow these steps to create a group lockout energy isolation tag:

1. Type your identifying information into the text boxes. The minimum required information is worker name and contact information or operations group name and contact information, and group lockout ID. ELP ID is optional.
2. Include an explicit warning such as DO NOT OPERATE, DO NOT START, DO NOT ENERGIZE or similar wording.
3. Print the tag in color, fold, cut, and laminate. Use a hole punch to make a hole as indicated. Slip the lock through this hole when using the tag.
3 Group Lockout Master Tag

Follow these steps to create a group lockout master tag:

1. Type your identifying information into the text boxes. The minimum required information is Group Lockout ID, lead authorized worker name and contact information or operations group name and contact information. If used with an ELP, the ELP ID is optional.

2. Print the tag in color, fold, cut, and laminate. Use a hole punch to make a hole as indicated. Slip the lock through this hole when using the tag, or use a nylon tie to affix the tag to the group lockout master lock.
4 Administrative Control Tag

Follow these steps to create an administrative control tag:

1. Type your identifying information into the text boxes. The minimum required information is worker name and contact information or operations group name and contact information. Optional information includes the equipment id, reason for lockout, and date the lock was applied.
2. Print the tag in color, fold, cut, and, laminate. Use a hole punch to make a hole as indicated. Slip the lock through this hole when using the tag.

Administrative Lockout

Name: ________________

Dept: ________________

Ext: _______ Pager: _______

DO NOT OPERATE

DO NOT REMOVE THIS TAG

SEE OTHER SIDE

29 August 2023

ESH Manual Chapter 51, "Control of Hazardous Energy," is being revised.

For current forms and templates, please see this site:

Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
Chapter 51: Control of Hazardous Energy

Hazard Analysis Procedure

Product ID: 440 | Revision ID: 2303 | Date published: 18 June 2021 | Date effective: 18 June 2021

URL: https://www-group.slac.stanford.edu/esh/eshmanual/references/coheProcedHazAnalysis.pdf

1 Purpose

The purpose of this procedure is to determine if the energy source(s) associated with service or maintenance performed on any machinery, equipment, or system has the potential to harm workers. If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control of Hazardous Energy: General Requirements). This procedure covers determining whether hazardous energy may exist. It applies to workers, supervisors, equipment custodians, and area and building managers.

2 Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Responsible manager or supervisor or equipment custodian</td>
<td>Assigns a worker to conduct a hazard analysis (or to confirm there is an existing equipment-specific procedure [ELP] or energy isolation plan [EIP] for the work). For group lockouts using new ELPs or EIPs, the hazard analysis is prepared by the ELP/EIP preparer. For other lockouts, the hazard analysis is prepared by an authorized worker, familiar with the equipment and work scope.</td>
</tr>
<tr>
<td>2.</td>
<td>Worker</td>
<td>Reviews the scope of work and affected machine, equipment, or system</td>
</tr>
<tr>
<td>3.</td>
<td>Worker</td>
<td>Identifies all energy sources (electrical, mechanical, thermal, potential, pneumatic, hydraulic, chemical, and radiological, et cetera) (see Section 2.1, “Energy Types: Additional Information and References”)</td>
</tr>
<tr>
<td>4.</td>
<td>Worker</td>
<td>Determines if any energy sources are hazardous (see Table 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the value of the hazardous energy falls in the “Evaluate Hazard and Consider Lockout” column, lockout should be used if the authorized worker determines that lockout is warranted based on an evaluation of all hazards, including secondary hazards and combined hazards, associated with the work scope and equipment or system conditions; otherwise lockout is not required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the value falls in the “Lockout Required” column, lockout is required. For energy types without an explicit value, consults additional applicable resources to make a determination (such as information in this document and relevant ESH Manual chapters, and the control of hazardous energy [CoHE] program manager, responsible directorate ESH coordinator, safety officer, and subject matter experts)</td>
</tr>
<tr>
<td>5.</td>
<td>Worker</td>
<td>Evaluates each task including setup, installation, removal, adjusting, cleaning, troubleshooting, and programming to analyze for hazards</td>
</tr>
<tr>
<td>6.</td>
<td>Worker in consultation with building or area manager, if necessary</td>
<td>Evaluates the work environment for potentially hazardous combinations (see “Potentially Hazardous Energies in Combination” below)</td>
</tr>
<tr>
<td>7.</td>
<td>Worker</td>
<td>For complex lockouts, documents results of the hazard analysis in an ELP or EIP and submits for approval (or confirm the adequacy of the existing ELP or EIP)</td>
</tr>
</tbody>
</table>
Table 1 Hazardous Energy Thresholds

<table>
<thead>
<tr>
<th>Energy Form</th>
<th>Evaluate Hazard and Consider Lockout</th>
<th>Lockout Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical (AC or DC)</td>
<td>< 50 V and ≥ 5 mA or ≥ 50 V and < 5 mA or > 0.25 J and ≤ 10 J stored energy</td>
<td>≥ 50 V and ≥ 5 mA or < 50 V and ≥ 1000 W or > 10 J stored energy</td>
</tr>
<tr>
<td>Thermal (hot)</td>
<td>Liquids or gases ≤ 125°F (52°C) or Surfaces ≤ 140°F (60°C)</td>
<td>Liquids or gases > 125°F (52°C) or Surfaces ≥ 140°F (60°C)</td>
</tr>
<tr>
<td>Thermal (cold)</td>
<td>Liquids and surfaces ≥ 27°F (-3°C)</td>
<td>Liquids and surfaces < 27°F (-3°C)</td>
</tr>
<tr>
<td>Magnetic fields</td>
<td>No threshold with respect to control of hazardous energy; each situation must be evaluated. Refer to Chapter 50, “Non-Ionizing Radiation”, for magnetic field exposure limits.</td>
<td></td>
</tr>
<tr>
<td>Kinetic</td>
<td>No threshold; each situation must be evaluated</td>
<td></td>
</tr>
<tr>
<td>Potential</td>
<td>No threshold; each situation must be evaluated</td>
<td></td>
</tr>
<tr>
<td>Pneumatic and hydraulic</td>
<td>No threshold; each situation must be evaluated</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>No threshold: each situation must be evaluated based on the chemical’s hazardous properties</td>
<td></td>
</tr>
<tr>
<td>Non-ionizing radiation other than lasers (3 kHz to 300 GHz, or > 1 mm)</td>
<td>Many sources of non-ionizing electromagnetic radiation involve electrical hazards that must be considered even when the radiation emitted is not hazardous. See Chapter 50, “Non-Ionizing Radiation”, for requirements and maximum permitted exposures (MPEs)</td>
<td>≤ MPEs > MPE</td>
</tr>
<tr>
<td>Lasers (180 nm to 1 mm)</td>
<td>Class 3B or Class 4 lasers: use lockout or controls equivalent to lockout approved by the laser safety officer. See Chapter 10, “Laser Safety”.</td>
<td></td>
</tr>
<tr>
<td>Ionizing radiation</td>
<td>Any work that involves ionizing radiation must be performed in accordance with requirements set forth in Chapter 9, “Radiological Safety”. For equipment that could potentially expose a worker to ionizing radiation above an administrative control level in a short time period during servicing and maintenance on that equipment, the use of lockout should be considered as part of the work planning phase. Work that requires breaching accelerator-related vacuum systems requires lockout of the RF source(s) in accordance with the requirements of this chapter. Call the Radiation Protection Department (ext. 4299) for information on areas controlled for radiological purposes, dosimetry, training, and work planning.</td>
<td></td>
</tr>
</tbody>
</table>

1. Double valve isolation is required when the operating temperature exceeds 200°F or the operating pressure exceeds 500 psig.
2.1 Energy Types: Additional Information and References

2.1.1 Electrical

For more information, see Chapter 8, “Electrical Safety”.

2.1.2 Thermal

Thermal energy – what we experience as heat or cold – is commonly produced by mechanical devices (combustion and/or friction), electrical resistance, and chemical reactions (or changes of state). Thermal energy can be controlled and/or dissipated.

Burns can occur due to both heat and cold, and the severity of a burn depends on temperature and duration or contact. The threshold for injury due to contact with hot liquids (which can cause burns or scalding) is 120°F (52°C). The threshold for injury to tissues due to cold is slightly below freezing (27°F [-3°C]). All cryogenic liquids present a cryogenic burn hazard.

Contact hazards with hot or cold surfaces are typically controlled with insulation, personal protective equipment (PPE), and/or time sufficient to allow cooling or warming.

2.1.3 Kinetic

Kinetic energy is the extra energy an object possesses due to its motion (for example, rotating gears, fans, fan belts, pulleys, flywheels, and rolling or pressing components). Setting an object into motion requires that the object be accelerated to attain motion, and this energy, if hazardous, must be dissipated. No threshold is proposed for kinetic energy; each situation must be evaluated.

2.1.4 Potential

Potential energy can be thought of as the energy stored within a physical system. Objects at an elevated level, for instance, contain more potential energy than when they are physically lowered. This also referred to as configurational energy and can be eliminated by lowering an object in a controlled manner. Potential energy is also stored in a compressed spring, which can be released in a controlled manner. No threshold is proposed for potential energy; each situation must be evaluated.

2.1.5 Pneumatic and Hydraulic

Pneumatic and hydraulic energy refers to the energy inherent in the pressure that a gas or liquid is under. Pressure is generally expressed as psig (pound-force per square inch gauge), which expresses pressure relative to the surrounding atmosphere. A system can be under positive pressure (greater than atmospheric pressure) or negative pressure (vacuum).

Pneumatic refers to pressurized air or gas, as in compressed air or gas in a compressed gas cylinder. Hydraulic refers to pressurized liquid, such as water in a hose pressurized by a pump. Releasing pneumatic or hydraulic pressure involves identifying the pressure source. If equipment is producing pressure, turn it off. If the pressure is stored, allow it to release or dissipate under controlled conditions.

Note: This section discusses non-hazardous gases; hazardous gases and liquids at any pressure must be locked out due to their chemical hazards (for example toxic, flammable, reactive).
2.1.5.1 Pneumatic Injury

Provided that skin and eyes are protected and no potential for deadheading (point blank exposure of the jet to bare skin) exists, the pressure required to inflict pneumatic jet injuries to healthy unbroken skin is over 600 psi. Pneumatic sources directed at eyes or ears can cause injuries at significantly lower pressures, depending on the proximity and diameter of the jet. Cal/OSHA (8 CCR 3301) limits air pressure to 10 psi for blowing dirt, chips or dust from clothing while it is being worn.

Note: The Cal/OSHA limit of 10 psi for using compressed air to clean clothes does not protect from particulates that may be generated by cleaning with pressurized air below 10 psi.

2.1.5.2 Hydraulic Injury

The pressure required to break intact healthy skin delivered by a hydraulic jet is more than 600 psi. Depending on the diameter of the jet and distance between it and the affected area, much lower pressures are hazardous to eyes, ear drums, and open wounds. Hydraulic injection injuries at distances up to 4 inches between the skin and jet have been recorded.

In larger piping systems, a hazard may be present if the liquid momentum conveyed by water and other liquids is sufficient to knock a worker down.

2.1.5.3 Compressed Air and Water Utility Systems

Nearly every industrial or commercial installation uses utility water or compressed air systems operating at pressures up to 150 psig. Common practice has shown that wearing normal PPE such as coveralls, gloves, and safety glasses provides worker protection and lockout is not normally used or required for servicing and maintenance of these systems.

The need for lockout may be indicated at relatively low pressures in such systems due to secondary factors such as working at elevation, since a sudden release could activate the startle reflex that may cause a fall. Take into account all secondary hazards present in a particular work environment.

2.1.5.4 Compressed Gas Cylinders

Compressed gas cylinders or subsequent valves feeding downstream systems are subject to lockout where 1) the system is being serviced or modified, and 2) the gas is flammable, the gas is toxic, or the delivery pressure with the regulator valve fully open could result in an injury. Lockout does not apply to cylinder installation and removal.

2.1.6 Chemical

There is no threshold below which it can be categorically stated that no hazard exists for a system that may release hazardous chemical solutions at any pressure. This also applies to systems that contain flammable liquids or gases or any gases with a potential of creating a hazardous atmosphere, including gases used for fire suppression systems. Lockout may be necessary based on the hazardous properties of the chemical or to prevent a chemical release that poses environmental consequences. For more information on the properties of hazardous chemicals, see Chapter 40, “Chemical Lifecycle Management”.

2.1.7 Non-ionizing Radiation and Magnetic Fields

Non-ionizing radiation is a form of electromagnetic radiation that can be hazardous at exposure levels above the specified maximum permissible exposure (MPE) levels even though it does not cause ionization of molecules. Non-ionizing radiation includes high intensity visible and invisible light (ultraviolet and infrared) sources, microwaves, radiofrequency waves, and magnetic fields.
Where non-ionizing radiation sources exceed their respective MPE, the hazard must be evaluated. Service and maintenance on radiofrequency and microwave systems generally need hazardous energy control and lockout when exposure above the MPE is possible. For more information refer to Chapter 50, “Non-ionizing Radiation”.

Refer to ESH Manual Chapter 50 Non-Ionizing Radiation for magnetic field exposure limits.

2.1.8 Lasers

Where workers could be exposed to beams from Class 3B and Class 4 lasers while performing service or maintenance on those systems, procedures to achieve control of hazardous energy must be evaluated, including the possible need for lockout. Lockout may apply in such situations as

- Connecting or disconnecting fiber terminations if the fiber transmits Class 3B or Class 4 laser radiation
- Maintenance or service work on equipment associated with a laser transport line

Laser SOPs are developed in compliance with ANSI Z136.1 to address potential hazards associated with service and maintenance during normal production operations using alternative energy controls. For example, in cases where the beam cannot be shut down for maintenance, but instead will be controlled using electromagnetically- or pneumatically-controlled shutters, an effective beam stop bolted in place and tagged LASER SAFETY DEVICE – DO NOT REMOVE would provide additional protection and meet the intent of the lockout requirements. Refer to Chapter 10, “Laser Safety”.

Personal protective eyewear is required when laser personnel work in a nominal hazard zone where laser radiation may be present above the MPE.

2.1.9 Ionizing Radiation

When the potential exists for a worker to exceed an administrative control level in a short time period, consider the use of lockout as part of the work planning phase. For more information see Chapter 9, “Radiological Safety”.

Lockout may apply:

- To prevent external radiation exposure during service or maintenance of radiation-generating devices
- To prevent external radiation exposure during use of exposure systems with sealed sources having pneumatic or mechanical transport systems

2.2 Potentially Hazardous Energies in Combination

The following partial list of possible dangerous combinations of hazardous energies is meant to illustrate the types of configurations to watch for; many other combinations of energies may be hazardous.

- **Water and electricity.** Consider the potential for shock or arc flash hazard when working on water lines over electrical components or when working on electrical systems in a wet location.

- **Compressed air and toxic materials.** Consider results of inadvertent activation (will it generate toxic or radioactive dusts or aerosols that create contamination or personal exposure?)

- **Work on a ladder and unexpected energy or noise.** Consider the location of overhead water or air lines when placing the ladder; consider the effect of unexpected impact of air or water or elevated noise level from release of compressed air. (A startled worker may fall or drop tools.)

- **Inert gas in a confined space.** Consider asphyxiation hazards in a work location with poor or no ventilation; shut the gas source off and lock it out avoids oxygen depletion.
Magnetic fields and metal. Consider that ferrous tools may be propelled by strong magnetic fields.

Pneumatic and thermal. Consider thermal and pneumatic hazards near live steam or pressure relief valves.

3 Forms

The following forms and systems are required by this procedure:

- None

4 Recordkeeping

The following recordkeeping requirements apply for this procedure:

- None

5 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)

- Chapter 51, “Control of Hazardous Energy”
- Chapter 8, “Electrical Safety”
- Chapter 9, “Radiological Safety”
- Chapter 10, “Laser Safety”
- Chapter 14, “Pressure Systems”
- Chapter 40, “Chemical Lifecycle Management”
- Chapter 50, “Non-ionizing Radiation”

Other Documents

Chapter 51: Control of Hazardous Energy

Simple Lockout Procedure

1 Purpose

The purpose of this procedure is to prevent worker exposure to hazardous energy (such as from unexpected energization, startup, or release of stored energy). It covers locking out a machine, equipment, or system for which all the following conditions are met:

1. Has a single source of hazardous energy that can be readily identified, isolated, and locked out; and the single source controls all hazards, with no potential for stored hazardous energy

2. Involves only one department, group, craft, or employer, and does not involve a shift change

3. Contains no potential to release a hazardous material

Note This procedure may be used for locking out multiple molded case breakers in a panel board with a single cable-type lockout device.

Lockouts that meet these conditions are considered simple. If any of these conditions are not met (for example, there are multiple energy sources or multiple groups), the lockout is considered complex and this procedure may not be used. Instead, an equipment-specific lockout procedure (ELP) or a group lockout procedure must be used (see Control of Hazardous Energy: General Requirements). This procedure applies to workers, supervisors, and equipment custodians.

2 Procedures

2.1 Establishing a Lockout

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Authorized worker or supervisor</td>
<td>Contacts the equipment custodian</td>
</tr>
<tr>
<td>2.</td>
<td>Equipment custodian</td>
<td>Grants permission to work on equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides additional contacts, if any, for work coordination</td>
</tr>
<tr>
<td>3.</td>
<td>Authorized worker</td>
<td>Notifies affected workers before shutdown:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Notifies affected workers that a lockout is about to take place, the reason for it, and the specific affected machinery or equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Clears the area of people and any non-essential objects</td>
</tr>
<tr>
<td>Step</td>
<td>Person</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 4. | Authorized worker | Identifies and locates the energy source and energy isolating device (see Control of Hazardous Energy: Hazard Analysis Procedure)
Important: confirms lockout is simple or complex: if more than one energy source is identified follows a complex lockout procedure |
| 5. | Authorized worker or equipment operator | Shuts the machine or equipment down using the normal stopping procedure |
| 6. | Authorized worker or equipment operator or qualified electrical worker | Operates the disconnect switch, circuit breaker, valve, or other energy isolating device to isolate (disconnect) the machine or equipment from its energy source
For electrical equipment with viewing window, verifies all blades are fully open. Switchgear-type breakers must be open and racked out to the fully disconnected position. Rackable motor control center (MCC) buckets must be fully withdrawn with the breaker open.
Note: wears appropriate personal protective equipment (PPE) per the arc flash hazard label |
| 7. | Authorized worker | Applies personal LOTO lock and tag to the energy isolating device
For subcontracted work, SLAC worker locks on first, followed by subcontractor; for non-electrical lockouts the SLAC worker may apply a non-red administrative lock. For lockouts involving an electrical hazard the SLAC red LOTO lock should be replaced with a non-red administrative lock after completion of ZVV (see Step 10). If both the SLAC worker(s) and the subcontractor worker(s) will perform work under the lockout, then the lockout is complex and the general lockout procedure may not be used. A complex lockout procedure is required. |
| 8. | Authorized worker | Relieves, exhausts, or restrains stored or residual energy in the machine or equipment by grounding, blocking, bleeding down, et cetera |
| 9. | Authorized worker | Verifies zero energy by
- Attempting to start the equipment using normal operating controls to check that the equipment does not start or become energized (i.e., verification of non-operation)
- Returning the operating control(s) to the NEUTRAL or OFF position before proceeding with servicing or maintenance work
- Ensuring zero energy state appropriate to the type of hazardous energy involved |
| 10. | Qualified electrical worker | If work will be performed within the arc flash protection boundary or limited approach boundary, performs zero voltage verification (ZVV) of circuit elements and electrical parts to which worker(s) may be exposed (see Control of Hazardous Energy: Zero Voltage Verification Procedure)
Note: wears appropriate PPE per the arc flash hazard label
Note: the electrical worker in charge must control access to electrical equipment per the boundaries on the arc flash hazard label |
| 11. | Authorized worker | Proceeds with servicing or maintenance work |
| 12. | Authorized worker | Returns equipment to service as described in Section 2.2, “Returning Equipment to Service” |
2.2 Returning Equipment to Service

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Authorized worker</td>
<td>Checks the machine/equipment and surrounding area to ensure that non-essential objects have been removed, guards have been reinstalled, and that the machine/equipment is operationally intact</td>
</tr>
<tr>
<td>2.</td>
<td>Authorized worker</td>
<td>Verifies machine/equipment controls are in the NEUTRAL or OFF position</td>
</tr>
<tr>
<td>3.</td>
<td>Authorized worker</td>
<td>Verifies that all affected workers and other authorized workers are out of harm’s way</td>
</tr>
<tr>
<td>4.</td>
<td>Authorized worker</td>
<td>Removes locks and tags and prepares to restart the machine/equipment</td>
</tr>
<tr>
<td>5.</td>
<td>Authorized worker</td>
<td>Before restarting machinery/equipment, notifies affected workers and the equipment custodian, equipment owner, or system owner, as applicable, that work is complete, that locks and tags have been removed, and that normal operations may proceed</td>
</tr>
</tbody>
</table>

3 Forms

The following forms and systems are required by this procedure:

- None

The following checklists are provided as guidance:

- Control of Hazardous Energy: Simple Lockout Checklist for SLAC Employees (SLAC-I-730-0A10J-008). Checklist for completing a simple lockout for SLAC employees

4 Recordkeeping

The following recordkeeping requirements apply for this procedure:

- None

5 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)

- Chapter 51, “Control of Hazardous Energy”
 - Control of Hazardous Energy: General Requirements (SLAC-I-730-0A10S-004)
 - Control of Hazardous Energy: Hazard Analysis Procedure (SLAC-I-730-0A10C-002)
 - Control of Hazardous Energy: Zero Voltage Verification Procedure (SLAC-I-730-0A10C-004)
<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>SLAC Action</th>
</tr>
</thead>
</table>
| 1 | Authorized Worker or supervisor | Contact the equipment custodian to establish:
- permission to work on equipment and
- additional contacts, if any, for work coordination |
| 2 | Authorized Worker | Notify affected workers prior to shut down:
- Notify all affected workers that a lockout/tagout is about to take place, the reason for it, and the specific affected machinery or equipment
- Clear the area of people and any nonessential objects |
| 3 | Authorized Worker | Identify and locate the energy source and energy isolating device. |
| 4 | Authorized Worker or equipment operator | Shut the machine or equipment down using the normal shutdown procedure. |
| 5 | Authorized Worker or equipment operator or Qualified Electrical Worker | Operate the disconnect switch, circuit breaker, valve, or other energy isolating device to isolate the machine or equipment from its energy source. For electrical equipment with viewing window, verify all blades are fully open. Switchgear-type breakers should be open and racked out. |
| 6 | Authorized Worker | Apply personal LOTO lock and tag to the energy isolating device. |
| 7 | Authorized Worker | Verify zero energy:
- Attempt to start the equipment using normal operating controls to check that the energy source has been successfully disconnected.
- Return the operating control(s) to the NEUTRAL or OFF position before proceeding with work. |
| 8 | Qualified Electrical Worker | Performs ZVV if work will be performed within the arc flash or shock hazard protection boundary. Follow Control of Hazardous Energy: Zero Voltage Verification Procedure |
| 9 | Authorized Worker | Proceeds with servicing or maintenance work. |

Notes:
a) Wear appropriate PPE per the arc flash label for switching and ZVV.
b) Each Authorized Worker shall apply their own personal LOTO lock. Never rely on another worker’s lock.
c) The worker in charge shall control access to electrical equipment per the boundaries on the arc flash label.
SIMPLE LOCKOUT CHECKLIST FOR SUBCONTRACTORS

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Authorized Worker or supervisor | Contact the equipment custodian to establish:
- permission to work on equipment and
- additional contacts, if any, for work coordination |
| 2 | Authorized Worker | Notify affected workers prior to shut down:
- Notify all affected workers that a lockout/tagout is about to take place, the reason for it, and the specific affected machinery or equipment
- Clear the area of people and any nonessential objects |
| 3 | Authorized Worker | Identify and locate the energy source and energy isolating device. |
| 4 | Authorized Worker or equipment operator | Shut the machine or equipment down using the normal shutdown procedure. |
| 5 | Authorized Worker or equipment operator or Qualified Electrical Worker | Operate the disconnect switch, circuit breaker, valve, or other energy isolating device to isolate the machine or equipment from its energy source.
- For electrical equipment with viewing window, verify all blades are fully open. Switchgear-type breakers should be open and racked out. |
| 6 | Authorized Worker | SLAC worker, apply personal LOTO or administrative lock and tag to the energy isolating device, as described in note (d).
Subcontractor workers: apply personal LOTO lock and tag. |
| 7 | Authorized Worker | Verify zero energy:
- Attempt to start the equipment using normal operating controls to check that the energy source has been successfully disconnected.
- Return the operating control(s) to the NEUTRAL or OFF position before proceeding with work. |
| 8 | Qualified Electrical Worker | Performs ZV if work will be performed within the arc flash or shock hazard protection boundary. Follow Control of Hazardous Energy: Zero Voltage Verification Procedure |
| 9 | Qualified Electrical Worker | The SLAC qualified electrical worker replace red personal LOTO lock and tag with a non-red administrative lock and tag. |
| 10 | Authorized Worker | Proceeds with servicing or maintenance work. |

Notes:
a) Wear appropriate PPE per the arc flash label for switching and ZVV.
b) Each Authorized Worker shall apply their own personal LOTO lock. Never rely on another worker's lock.
c) The worker in charge shall control access to electrical eqpt. per the boundaries on the arc flash label.
d) For lockouts that require ZVV (step 9) the SLAC qualified electrical worker should apply a red LOTO lock. The red LOTO lock should be replaced with a non-red administrative lock after completion of ZVV (step 10). For lockouts that don't require ZVV the SLAC worker should apply a non-red administrative lock and tag at this time.
e) Subcontractor may witness SLAC perform stored energy release, zero energy verification, and ZVV. Subcontractor may also perform ZVV to satisfy their own company's lockout/tagout procedure.

SLAC-I-730-0A10J-009-R001
Chapter 51: Control of Hazardous Energy

Group Lockout Procedure

1 Purpose

The purpose of this procedure is to prevent worker exposure to hazardous energy (such as from unexpected energization, start-up, or release of stored energy). It covers locking out a machine, equipment, or system for which any of the following conditions are met:

- Multiple energy sources
- Multiple crews
- Multiple crafts
- Multiple locations
- Multiple employers
- Multiple disconnecting means
- Particular sequences of operation are necessary to establish the locked out condition safely
- Work involves a shift change

Such lockouts are considered complex and may be performed only under this procedure or an equipment-specific lockout procedure (ELP) (see Control of Hazardous Energy: General Requirements). This procedure applies to workers, supervisors, and equipment custodians.

2 Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define the Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Work scope owner (manager, supervisor, project engineer, or field construction manager)</td>
<td>Designates a lead authorized worker to be responsible for the group lockout. Note: when a group lockout is established by an operations group, the functions and responsibilities of the lead authorized worker may be transferred to the operations group. Operations group members involved with execution of the group lockout must themselves be authorized workers.</td>
</tr>
<tr>
<td>Identify and Analyze Hazards and Develop and Implement Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Work scope owner</td>
<td>Designates a knowledgeable worker familiar with the equipment and work scope to prepare an energy isolation plan (EIP) and a second knowledgeable worker to review it</td>
</tr>
<tr>
<td>Step</td>
<td>Person</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 3. | EIP preparer | Identifies hazardous energy sources following Control of Hazardous Energy: Hazard Analysis Procedure:
| | |  Reviews as-built drawings, equipment labels, and other available information
| | |  Consults with persons knowledgeable with the system or equipment
| | |  Identifies required energy isolation devices
| | |  Identifies sources of stored energy
| | |  Identifies location(s) to perform verification of non-operation, zero energy verification, and zero voltage verification (ZVV) |
| 4. | EIP preparer | Develops the energy isolation plan (see Control of Hazardous Energy: Group Lockout Energy Isolation Plan Template and Control of Hazardous Energy: General Requirements, Section 2.4.4.1) |
| 5. | EIP reviewer | Performs an independent review of the energy isolation plan |
| 6. | EIP preparer | Prepares a complex lockout permit (see Control of Hazardous Energy: Complex Lockout Permit and Control of Hazardous Energy: General Requirements, Section 2.4.2.1) |
| 7. | Lead authorized worker | Reviews energy isolation plan with knowledgeable individuals (may include the project manager, project engineer, electrical supervisor, subcontractor supervisor, safety inspectors, electrical safety officer, or other subject matter experts) |

Authorization and Release

| 8. | Lead authorized worker | Establishes permission and obtains release to remove equipment from service |
| 9. | Lead authorized worker | Notifies affected workers before equipment shutdown
| | |  Notifies affected workers that a lockout is about to take place, the reason for it, and the specific affected machinery or equipment
| | |  Clears the area of people and any non-essential objects |

Perform the Work within Controls

10.	Lead authorized worker	Locates each energy isolation device listed in the energy isolation plan
11.	Qualified electrical worker	Wears appropriate personal protective equipment (PPE) per the arc flash label for switching and ZVV (see Control of Hazardous Energy: Zero Voltage Verification Procedure)
12.	Qualified electrical worker	Assists the lead authorized worker with switching as needed to establish energy isolation
13.	Authorized worker	Assists the lead authorized worker with equipment operation as needed to establish energy isolation
14.	Lead authorized worker	 Places/verifies each energy isolation device in the required LOTO position
		 Applies personal red lockout lock and tag (lead authorized worker) or operations lock and tag (operations group) to each isolation device (each tag must call out the unique ID assigned to the group lockout)
		 Signs off each point on the energy isolation plan as locks are placed
		 Places the key for each lock in the group lockbox
Step	Person	Action
---	---	---
		▪ Performs or witnesses each verification of zero energy or verification of non-operation, and each release of stored energy. For electrical equipment with viewing window, verifies all blades are fully open. Switchgear-type breakers must be open and racked out to the fully disconnected position. Rackable MCC buckets must be fully withdrawn with the breaker open.
		▪ Signs off each verification of zero energy or verification of non-operation

15. **Qualified electrical worker**

Assists the lead authorized worker in establishing an electrically safe condition by performing ZVV of all circuit elements and electrical parts to which worker(s) may be exposed as listed in the energy isolation plan.

16. **Lead authorized worker or qualified electrical worker**

Signs off each ZVV step on the energy isolation plan.

17. **Lead authorized worker**

When all energy isolation plan steps are complete affixes a personal red lockout lock and orange group lockout master lock tag to the group lockbox. This **group lockout master lock** is the first lock to be applied on the group lockbox and the lock must stay in place for the duration of all work.

Important: the lead authorized worker must be the first to lock on, and the last to lock off, the energy isolating devices or group lockbox, with the following two exceptions: 1) authorized workers may lock on to the energy isolating devices or group lockbox to perform activities associated with establishing the lockout, such as zero voltage verification; 2) an administrative lock and tag may be applied to the energy isolating devices or group lockbox for the purpose of configuration control.

Whenever an administrative lock and tag is used, the lead authorized worker retains responsibility for the integrity of the lockout, including re-verifying proper energy isolation if necessary prior to placing the master lock on the group lockbox.

For either exception, no work may be performed under the lockout until the lockout is complete and the group lockout master lock and orange master lock tag are affixed to the group lockbox.

- Signs Section 2 of the complex lockout permit indicating that the group lockout is complete and the system is safe to work.

18. **Authorized worker**

- Informs the lead authorized worker of intent to lock on to the group lockout
- Reviews the energy isolation plan, including associated drawings and/or sketches
- Optional: walks down energy isolation points to verify proper lockout
- Verifies all energy isolation plan steps are complete and signed off
- Verifies lead authorized worker approval in Section 2 of the complex lockout permit
- Verifies lead authorized worker master lock and orange master lock tag are applied to the group lockbox
- Subcontractor: verifies is authorized by supervisor to lock on to the lockout
- Signs on the group lockout permit and affixes a personal lockout lock and tag to the group lockbox. Each worker must apply his or her own personal LOTO lock. Never rely on another worker's lock.
- Re-verifies personal lock on lockbox at the beginning of each shift.

Important: authorized workers must complete this step each time they lock on.
<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
</table>
| 19. | Lead authorized worker | Coordinates multiple work groups under group lockout
For work across multiple shifts a lead authorized worker must be designated for each shift. All authorized workers on shift must be informed of this designation. Oncoming lead authorized workers must apply their own lock(s) to the energy isolating devices or, if used, the group lockbox. The off-going lead authorized worker will communicate with the oncoming lead authorized worker to ensure proper coordination of work scopes and work groups across multiple shifts. Oncoming lead authorized workers must stay locked on the energy isolating devices or, if used, the group lockbox until work on their shift has been discontinued, or until their lead duties have been transferred to another lead authorized worker. |
| 20. | Authorized worker | ▪ Performs work under group lockout
▪ Restricts equipment access in accordance with the arc-flash label(s) whenever there are exposed electrical parts
Important: the electrical worker in charge must control access to electrical equipment per the boundaries on the arc flash label. |
| 21. | Authorized worker | ▪ Upon completion of work informs the lead authorized worker of intent to lock off
▪ Signs off the complex lockout permit
▪ Removes personal red lockout lock and tag from the group lockbox
Note: to lock back on repeats Step 18. |
| 22. | Lead authorized worker | Upon completion of work verifies all authorized workers have signed off the complex lockout permit and all authorized worker locks and tags have been removed |
| 23. | Lead authorized worker | Checks the machine/equipment and surrounding area to ensure that non-essential objects have been removed, guards have been reinstalled, and that the machine/equipment is operationally intact |
| 24. | Lead authorized worker | Verifies machine/equipment controls are in the NEUTRAL or OFF position |
| 25. | Lead authorized worker | Verifies that all affected workers and authorized workers are out of harm’s way |
| 26. | Lead authorized worker | Removes group lockout master lock and tag from the group lockbox
Note: at this time the group lockout is no longer in effect. |
| 27. | Lead authorized worker | Removes personal red lockout locks from each energy isolation device in the reverse sequence from which they were installed
Important: if alternate sequencing is desired then a job-specific restoration plan must be prepared by a knowledgeable worker who is familiar with the equipment and work scope. |
| 28. | Lead authorized worker | Before restarting machinery/equipment, notifies either affected workers that work is complete and that locks and tags have been removed or the equipment custodian, equipment owner, or system owner that the lockout is complete and that normal operations may proceed |
3 Forms

The following are recommend templates. Equivalent forms may be used:

- **Control of Hazardous Energy: Group Lockout Energy Isolation Plan Template** (SLAC-I-730-0A10J-005). Template for creating group lockout energy isolation plans (EIPs); lists required elements of an energy isolation plan
- **Control of Hazardous Energy: Complex Lockout Permit** (SLAC-I-730-0A10J-006). Form for documenting lead authorized worker and sign on and sign off of workers for complex LOTO
- **Control of Hazardous Energy: Tag Templates** (SLAC-I-730-0A10J-003). Templates for creating tags

The following checklist is provided as guidance:

- **Control of Hazardous Energy: Group Lockout Checklist** (SLAC-I-730-0A10J-007). Checklist for completing a group lockout

4 Recordkeeping

The following recordkeeping requirements apply for this procedure:

- The supervisor or manager in charge of the work or operations group leader should retain the group lockout forms (energy isolation plan and complex lockout permit) for at least 12 months.

5 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)

- **Chapter 51, “Control of Hazardous Energy”**
 - **Control of Hazardous Energy: General Requirements** (SLAC-I-730-0A10S-004)
 - **Control of Hazardous Energy: Hazard Analysis Procedure** (SLAC-I-730-0A10C-002)
 - **Control of Hazardous Energy: Simple Lockout Procedure** (SLAC-I-730-0A10C-003)
 - **Control of Hazardous Energy: Zero Voltage Verification Procedure** (SLAC-I-730-0A10C-004)
<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Work scope owner (Manager, Supervisor, Project Engineer, FCM, or other)</td>
</tr>
</tbody>
</table>
| 2. | Authorized Worker, Lead Authorized Worker, Equipment Custodian, or other competent person as assigned by supervision | Develop Energy Isolation Plan (EIP):
- Assign a unique ID or name to the group lockout
- Review as-built drawings, equipment labels, and other available information to ascertain energy sources
- Consult as needed with persons knowledgeable with the system or equipment
- Identify required energy isolation devices
- Identify sources of stored energy
- Identify location(s) to perform zero energy checks and ZVV
- Prepare the written Energy Isolation Plan (see template)
- Prepare the Permit (sign on/sign off form) (see template) |
| 3. | EIP Reviewer | (d) Perform an independent review of the energy isolation plan. |
| 4. | Lead Authorized Worker | Review the Energy Isolation Plan with knowledgeable individuals [required only if the Lead Authorized Worker is not the EIP preparer] |
| 5. | Lead Authorized Worker | (d) Establish permission and obtain release to remove equipment from service. |
| 6. | Lead Authorized Worker | (d) Notify affected workers prior to equipment shutdown. |
| 7. | Qualified Electrical Worker(s) | (a) Assist the Lead Authorized Worker with electrical equipment switching as needed to establish energy isolation. For electrical equipment with viewing windows, verify all blades are fully open. Switchgear-type breakers should be open and racked out to the fully disconnected position. |
| 8. | Authorized Worker(s) | Assist the Lead Authorized Worker with equipment operation as needed to establish energy isolation. |
| 9. | Lead Authorized Worker | (d) Applies personal red lockout lock and tag (lead authorized worker) or operations lock and tag (operations group) to each isolation device (each tag must call out the unique ID assigned to the group lockout)
- Apply personal red lockout lock and tag to each isolation device
- Sign off each point on the Energy Isolation Plan as locks are placed
- Place the key for each lock in the group lockbox
- Perform or witness and sign off each verification of zero energy, each verification of non-operation, and each release of stored energy. |
| 10. | Qualified Electrical Worker(s) | (a) Assist the Lead Authorized Worker in establishing an electrically safe condition by performing ZVV as listed in the Energy Isolation Plan.
- Sign off each ZVV step on the Energy Isolation Plan. |
| 11. | Lead Authorized Worker | (d) Apply a personal red lockout lock and orange master lock tag on the group lockbox. This “master lock” is the first lock to be applied on the group lockbox and the lock shall stay in place for the duration of work
- Sign Section 2 of the Permit (sign on/sign off form) indicating that the group lockout is complete and the equipment is ready for work. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>SLAC Contractor</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Authorized Worker(s) including contractors</td>
<td>✓ ✓ (b) (b)</td>
<td>Inform the Lead Authorized Worker of intent to lock on the group lockout. Review the Energy Isolation Plan including associated drawings and/or sketches. Verify all energy isolation plan steps including all zero energy checks are complete and signed off. Optional: Walkdown energy isolation points to verify proper lockout. Verify Lead Authorized Worker approval in Section 2 of the Permit (sign on/sign off form). Verify Lead Authorized Worker personal red lockout lock and orange group lockout master lock tag is applied to the group lockbox. Apply a personal red lockout lock and tag to the group lockbox and sign Permit. Re-verify personal lock on lockbox at the beginning of each shift. NOTE: Authorized Workers shall repeat this step each time they lock on.</td>
</tr>
<tr>
<td>13</td>
<td>Lead Authorized Worker</td>
<td>✓ (d)</td>
<td>Coordinate multiple work groups under group lockout.</td>
</tr>
<tr>
<td>14</td>
<td>Authorized Worker(s) including contractors</td>
<td>✓ ✓ (c) (c)</td>
<td>Perform work under group lockout. Restrict equipment access in accordance with the arc-flash label(s) whenever there are exposed electrical parts.</td>
</tr>
<tr>
<td>15</td>
<td>Authorized Worker(s) including contractors</td>
<td>✓ ✓</td>
<td>Upon completion of work inform the Lead Authorized Worker of intent to lock off. Sign off the group lockout sign on/sign off form. Remove personal red lockout lock and tag from the group lockbox. NOTE: To lock back on repeat step 12.</td>
</tr>
<tr>
<td>16</td>
<td>Lead Authorized Worker</td>
<td>✓ (d)</td>
<td>Upon completion of work verify all Authorized Workers are signed off and all Authorized Worker locks and tags are removed.</td>
</tr>
<tr>
<td>17</td>
<td>Lead Authorized Worker</td>
<td>✓ (d)</td>
<td>Review equipment/system and surrounding area to ensure that equipment/system may be safely restored.</td>
</tr>
<tr>
<td>18</td>
<td>Lead Authorized Worker</td>
<td>✓ (d)</td>
<td>Verify equipment controls, if any, are in the NEUTRAL or OFF position.</td>
</tr>
<tr>
<td>19</td>
<td>Lead Authorized Worker</td>
<td>✓ (d)</td>
<td>Remove personal red lockout lock from the group lockbox.</td>
</tr>
<tr>
<td>20</td>
<td>Lead Authorized Worker</td>
<td>✓ (d)</td>
<td>Remove personal red lockout locks from each energy isolation device in the reverse sequence from which they were installed, OR If alternate sequencing is preferred then generate a written plan to remove locks in an alternate sequence.</td>
</tr>
<tr>
<td>21</td>
<td>Lead Authorized Worker</td>
<td>✓ (a) (d)</td>
<td>Before starting or energizing equipment notify affected employees, OR Turn over control of the equipment or system to the owner or custodian.</td>
</tr>
</tbody>
</table>

Notes:
- a) Wear appropriate PPE per the arc flash label for switching and ZVV.
- b) Each authorized worker shall apply their own personal LOTO lock. Never rely on another worker's lock.
- c) The worker in charge shall control access to electrical equipment per the boundaries on the arc flash label.
- d) Operations groups may establish energy isolation for systems and equipment under their control. In this case operations locks are placed on the energy isolation devices. Operations group members who perform LOTO activities must themselves be LOTO Authorized Workers. See Chapter 51 General Requirements, and Chapter 51 Group Lockout Procedure for details.
SLAC GROUP LOCKOUT - ENERGY ISOLATION PLAN

SECTION 1 -- LOTO IDENTIFICATION

<table>
<thead>
<tr>
<th>LOTO ID:</th>
<th>LOTO PURPOSE:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION/EQUIPMENT:</th>
<th>SUBCONTRACTOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAD AUTHORIZED WORKER or OPERATIONS GROUP:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SECTION 2 -- LOCK and TAG PLACEMENT, VERIFICATION OF NON-OPERATION, ZERO ENERGY VERIFICATION, ZERO VOLTAGE VERIFICATION, GROUNDING (AS APPLICABLE)

<table>
<thead>
<tr>
<th>ENERGY ISOLATION POINT NO. (STEP NO.)</th>
<th>ENERGY ISOLATION DEVICE/EQUIPMENT IDS</th>
<th>VERIFICATION OF NON-OPERATION, ZERO ENERGY VERIFICATION, ZERO VOLTAGE VERIFICATION, GROUNDS</th>
<th>LOTO STATE OR POSITION</th>
<th>PERFORMED or WITNESSED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MASTER LOCK ON GROUP LOCKBOX (always the last step in the Energy Isolation Plan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTACH VERIFIED DRAWINGS OR SKETCHES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROVIDE CLEAR, UNAMBIGUOUS LOCATION DESCRIPTION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ESH Manual Chapter 51, “Control of Hazardous Energy”, is being revised. For current forms and templates, please see this site: [Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates](#).
- For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).

SECTION 3 -- ENERGY ISOLATION PLAN APPROVAL

<table>
<thead>
<tr>
<th>Prepared By:</th>
<th>Date:</th>
<th>Reviewed By:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT & SIGN</td>
<td></td>
<td>PRINT AND SIGN</td>
<td></td>
</tr>
</tbody>
</table>

29 August 2023

ESH Manual Chapter 51, “Control of Hazardous Energy”, is being revised. For current forms and templates, please see this site: [Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates](#).

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
SLAC GROUP LOCKOUT - ENERGY ISOLATION PLAN

SECTION 1 -- LOTO IDENTIFICATION

<table>
<thead>
<tr>
<th>LOTO ID:</th>
<th>LOTO PURPOSE:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION/EQUIPMENT:</th>
<th>LEAD AUTHORIZED WORKER or OPERATIONS GROUP:</th>
<th>SUBCONTRACTOR(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 2 -- LOCK and TAG PLACEMENT, VERIFICATION OF NON-OPERATION, ZERO ENERGY VERIFICATION, ZERO VOLTAGE VERIFICATION, GROUNDING (AS APPLICABLE)

<table>
<thead>
<tr>
<th>ENERGY ISOLATION POINT NO. (STEP NO.)</th>
<th>ENERGY ISOLATION DEVICE/EQUIPMENT IDs</th>
<th>VERIFICATION OF NON-OPERATION, ZERO ENERGY VERIFICATION, ZERO VOLTAGE VERIFICATION, GROUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ATTACH VERIFIED DRAWINGS OR SKETCHES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROVIDE CLEAR, UNAMBIGUOUS LOCATION DESCRIPTIONS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTR</th>
<th>LOTO STATE OR POSITION</th>
<th>PERFORMED or WITNESSED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enter Isolation Point Number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Isolation Device equipment ID.</td>
</tr>
<tr>
<td>Enter the desired energy isolation state.</td>
</tr>
</tbody>
</table>

Note: ZVV steps should be listed as energy isolation steps, and the desired state is "verified deenergized."

The SLAC Lead Authorized Worker places lock and tag on each energy isolation device. If the Lead Authorized Worker is assisted by others, the LAW may sign as witnessing the steps, including ZVV steps.

Preparer and Reviewer
Print name and sign

SECTION 3 -- ENERGY ISOLATION PLAN APPROVAL

<table>
<thead>
<tr>
<th>Prepared By:</th>
<th>Date:</th>
<th>Reviewed By:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For current forms and templates, please see this site:
Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates
For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).

ESH Manual Chapter 51, “Control of Hazardous Energy,” is being revised.

29 August 2023
SECTION 1 -- REFERENCE INFORMATION

- **LOTO ID or Equipment-Specific Lockout/Tagout Procedure ID:**

SECTION 2 -- LEAD AUTHORIZED WORKER - SIGN WHEN ENERGY ISOLATION INCLUDING VERIFICATION OF NON-OPERATION, ZERO ENERGY VERIFICATION, ZERO VOLTAGE VERIFICATION, AND GROUNDS (IF APPLICABLE) IS COMPLETE, AND THE LOCKOUT IS READY FOR AUTHORIZED WORKER SIGN ON

Lead Authorized Worker or Operations Group:

<table>
<thead>
<tr>
<th>Authorized Worker Sign On</th>
<th>Date / Time</th>
<th>Authorized Worker Sign Off</th>
<th>Date / Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>print</td>
<td>sign</td>
<td>print</td>
<td>sign</td>
</tr>
</tbody>
</table>

Conductor Supervision (if applicable):

- **print name, sign, and print company name**

SECTION 3 -- SLAC AUTHORIZED WORKER SIGN-ON AND SIGN OFF

<table>
<thead>
<tr>
<th>Authorized Worker Sign On</th>
<th>Date / Time</th>
<th>Authorized Worker Sign Off</th>
<th>Date / Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>print</td>
<td>sign</td>
<td>print</td>
<td>sign</td>
</tr>
</tbody>
</table>

SLAC Authorized Workers shall not sign on until the SLAC Lead Authorized Worker or Operations Group has signed Section 2 of this Permit.

Subcontractor workers shall not sign on until the SLAC Lead Authorized Worker or Operations Group and Conductor Supervision has signed Section 2 of this Permit.

For Authorized Worker Sign-On and Sign-Off

- **print**
- **sign**
- **print**
- **sign**

ESM Manual Chapter 51, "Control of Hazardous Energy", is being revised.

For current forms and templates, please see this site:

- Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
COMPLEX LOCKOUT PERMIT

SECTION 1 -- REFERENCE INFORMATION

LOTO ID or Equipment-Specific Lockout/Tagout Procedure ID:

SECTION 2 -- LEAD AUTHORIZED WORKER - SIGN WHEN ENERGY ISOLATION INCLUDING VERIFICATION OF NON-OPERATION, ZERO ENERGY VERIFICATION, ZERO VOLTAGE VERIFICATION, AND GROUNDS (IF APPLICABLE) IS COMPLETE, AND THE LOCKOUT IS READY FOR AUTHORIZED WORKER SIGN ON

<table>
<thead>
<tr>
<th>LEAD AUTHORIZED WORKER or OPERATIONS GROUP:</th>
<th>print name, sign, and print company name</th>
<th>CONTRACTOR SUPV (if applicable):</th>
<th>print name, sign, and print company name</th>
</tr>
</thead>
</table>

SLAC AUTHORIZED WORKERS SHALL NOT SIGN ON UNTIL THE SLAC LEAD AUTHORIZED WORKER OR OPERATIONS GROUP HAS SIGNED SECTION 2 OF THIS PERMIT.

SECTION 3 -- SLAC AUTHORIZED WORKER SIGN-ON AND SIGN OFF

AUTHORIZED WORKER SIGN ON

DATE / TIME

AUTHORIZED WORKER SIGN OFF

DATE / TIME

<table>
<thead>
<tr>
<th>SLAC AUTHORIZED WORKER SIGN-ON AND SIGN OFF</th>
<th>print name, sign, and print company name</th>
</tr>
</thead>
</table>

The Lead Authorized Worker or operations group member will sign here when energy isolation is complete and the system is safe for work. Authorized workers shall not sign on until the lead signs here.

SLAC workers sign on the left hand side. Contractor supervisor/lead and contractor workers sign on the right hand side.

Each Authorized work shall sign on/lock on, and sign off/lock off.

Prior to locking on the Authorized Workers shall verify energy the isolation plan is complete with all required sign-offs. Workers may walk down each isolation point at their option.

SLAC workers sign on/sign off on the left hand side, contractor workers on the right hand side.

SECTION 4 -- CONTRACTOR AUTHORIZED WORKER SIGN-ON AND SIGN OFF

<table>
<thead>
<tr>
<th>CONTRACTOR AUTHORIZED WORKER SIGN-ON</th>
<th>print name, sign, and print company name</th>
</tr>
</thead>
</table>

29 August 2023

ESH Manual Chapter 51, “Control of Hazardous Energy”, is being revised. For current forms and templates, please see this site:

- Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).

16 March 2023 SLAC-I-730-0A10J-006-R002 coheTemplateComplexPermit.xlsx
Chapter 51: Control of Hazardous Energy

Equipment-specific Lockout Procedure (ELP) Template

Product ID: 443 | Revision ID: 2306 | Date Published: 18 June 2021 | Date Effective: 18 June 2021
URL: https://www-group.slac.stanford.edu/esh/eshmanual/references/coheTemplateELP.docx

This equipment-specific lockout procedure (ELP) template meets SLAC Control of Hazardous Energy (CoHE) program requirements for an ELP. SLAC groups who develop their own ELP template must meet specifications set forth in Control of Hazardous Energy: General Requirements (SLAC-I-730-0A10S-004).

The template includes the following required sections:

- Approvals page (includes names of preparer, reviewer, approver, and inspector who revalidates)
- Section A: Procedure Purpose
- Section B: Equipment Description
- Section C: Hazardous Energy Schematic Showing Isolation Points
- Section D: Hazardous Energy Assessment
- Section E: Preparation and Notification
- Section F: Steps for Controlling Hazardous Energy
- Section G: Steps to Return to Service
- Section H: Designated Authorized Workers
- Section I: ELP Permit

To use this template to create an ELP

1. Save the file to your workspace, renaming it
2. Edit the following document properties (File>Info>Properties>Advanced Properties) (Title is under the Summary tab, rest under Custom; to edit Custom properties, click on the name then edit in the Value box):
 1. Title to that of the procedure; include the name of the equipment and location (“ELP for xxx”)
 2. Office to the name of your organizational unit
 3. SLACDocNum and SLALRevNum to the document and revision numbers used by your organization. If you do not know about these, leave as is.
 4. DatePublished and DateEffective to the dates the revision of your procedure is published, and becomes effective
3. Delete ProductID, RevisionID, and URL from the top of this page
4. Update the fields (Ctrl-A, F9), then preview the file (File>Print); this updates the headers and footers

E-mail ESH Publishing (eshpubs@slac.stanford.edu) if you need help.
Preparer

Equipment custodian or designee (name and title)
Date

Validation by lead reviewer
I have implemented this procedure in its entirety and found it to be complete, accurate, and clear.

Maintenance tech/worker (name and title)
Date

This document has been reviewed and approved by

Department supervisor/manager (name and title)
Date

Additional reviewer (name and title)
Date

Annual ELP Re-validation

☐ ELP is correct and adequate.
☐ ELP is corrected as marked. I will forward corrections to the equipment custodian at the conclusion of the inspection.

Authorized inspector (name and title)
Date

☐ ELP is correct and adequate.
☐ ELP is corrected as marked. I will forward corrections to the equipment custodian at the conclusion of the inspection.

Authorized inspector (name and title)
Date

☐ ELP is correct and adequate.
☐ ELP is corrected as marked. I will forward corrections to the equipment custodian at the conclusion of the inspection.

Authorized inspector (name and title)
Date

29 August 2023
ESH Manual Chapter 51, “Control of Hazardous Energy”, is being revised.
For current forms and templates, please see this site:
Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates
For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
A. Procedure Purpose

The purpose of this procedure is to identify all hazardous energies and hazardous energy isolation points and list all required steps to safely shut equipment down and return it to service after work is completed.

Warning Failure to follow this lockout procedure may result in injury to personnel or damage to equipment and may result in severe disciplinary action, including termination.

B. Equipment Description

<table>
<thead>
<tr>
<th>Property control numbers (PC #s): (asset #)</th>
<th>Equipment location:</th>
</tr>
</thead>
</table>

Equipment description: (equipment name)

<table>
<thead>
<tr>
<th>Asset #</th>
<th>Equipment custodian/ procedure owner:</th>
</tr>
</thead>
</table>

For current forms and templates, please see this site:

Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).

(insert photo of equipment and any useful exterior diagrams of controls)
C. Hazardous Energy Schematic Showing Isolation Points

(insert schematic showing energy isolation systems/points)
D. Hazardous Energy Assessment

Evaluate the equipment for all hazardous potential energy sources in accordance with the Control of Hazardous Energy: Hazard Analysis Procedure (SLAC-I-730-0A10C-002), and check the left hand box if present. For each, describe the type and magnitude/type, danger zone (the part(s) of the equipment where the energy is found), and isolation points. Insert additional rows as needed to completely describe all sources to be controlled.

Note: describe in Section F how to control each identified hazardous energy source.

<table>
<thead>
<tr>
<th>Types of Energy</th>
<th>Type / Magnitude</th>
<th>Danger Zone</th>
<th>Isolation Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Electrical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Chemical:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Vacuum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Mechanical:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Thermal:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Thermal,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Radiation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Stored energy:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29 August 2023

ESH Manual Chapter 51, “Control of Hazardous Energy”, is being revised. For current forms and templates, please see this site:
Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
E. Preparation and Notification

1. If required by the equipment owner or equipment custodian, identify which authorized workers are pre-approved to implement this procedure. Record in Section H.

2. Notify
 - Before starting work, notify the equipment custodian and all affected workers of the lockout.
 - Also notify the equipment custodian(s) of any associated or affected equipment.

3. Shut down equipment
 - (describe steps to safely shutdown equipment)
 - (provide photos to demonstrate shutdown devices)

4. Test equipment (if required)
 - If any equipment testing will be required during or after service and/or maintenance, describe how it will be achieved in a safe manner.
 - **Important** Zero energy verification (ZEV) is required if equipment will be locked and tagged after testing.

F. Steps for Controlling Hazardous Energy Identified in D

Important For work that could expose the worker(s) to electrical conductors or circuit parts (that is, work within a shock or arc flash protection boundary), zero voltage verification (ZV) must be performed by a qualified electrical worker as described in Control of Hazardous Energy: Zero Voltage Verification Procedure (SLAC-I-730-0A10C-004).

Energy source description:
- Isolate:
- Control:
- Dissipation:
- Verify zero energy state appropriate to the type of hazardous energy involved:

Energy source description:
- Isolate:
- Control:
- Dissipation:
- Verify zero energy state appropriate to the type of hazardous energy involved:

(add as many rows as necessary to list all energy sources identified in Section D)
G. Steps to Return to Service

1. Verify equipment and area is clear of tools, workers, equipment, materials, and debris.

2. Unlock and remove any blocking devices; remove linkages.

3. Reposition any safety devices, guards, interlocks.

4. Warn workers to stay clear of area.

5. Remove all locks and tags for energy control points.

6. Verify affected areas are clear of personnel.

7. Re-energize the equipment. Note: be certain to consider effects of re-energization on all systems downstream of energy source.

8. Notify supervisor when work is complete.

9. If you find any errors in this procedure, or have suggestions on how to improve it, provide your comments to the equipment custodian.

H. Designated Authorized Workers

(Equipment custodian completes.)

☐ This section is not applicable. Any authorized worker may implement this ELP.

☐ Only the authorized workers listed below are permitted to implement this ELP.

<table>
<thead>
<tr>
<th>Authorized worker</th>
<th>Equipment custodian or designee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(printed name and signature)</td>
<td>(printed name, signature, and date)</td>
</tr>
</tbody>
</table>

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
I. ELP Permit

The lead authorized worker signature indicates that the lockout is complete and the system is safe for work.

Continuity of protection: The lead authorized worker must lock on and sign on before start of any work under this ELP, and must stay locked on until all work is complete and all authorized workers have locked off and signed off. If a group lockbox is used, the lead authorized worker must apply a group lockout master lock to the group lockbox. The group lockout master lock is applied before start of any work, and must remain locked on until all work is complete and all authorized workers have locked off.

If necessary, lead authorized worker duties may be reassigned to another authorized worker. All workers performing work under this ELP must be informed of the reassignment.

<table>
<thead>
<tr>
<th>Lead authorized worker(s)</th>
<th>Lock on (signature and date)</th>
<th>Lock off (signature and date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(print name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 August 2023</td>
<td></td>
</tr>
</tbody>
</table>

For current forms and templates, please see this site: [Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates](https://controlofhazardouselectricity.slac.stanford.edu/)

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).
Chapter 51: Control of Hazardous Energy

Zero Voltage Verification Procedure

1 Purpose

The purpose of this procedure is to place equipment in an electrically safe work condition in accordance with National Fire Protection Association (NFPA) 70E, “Standard for Electrical Safety in the Workplace” (NFPA 70E). It covers zero voltage verification (ZVV) when a lockout is being performed; it must be followed in all cases in which an electrical hazard exists and the equipment or system must be de-energized and locked out before work is performed. It applies to authorized workers and qualified electrical workers.

Workers who perform ZVV must have met the training requirements in Chapter 51, “Control of Hazardous Energy”, and be able to

- Distinguish exposed live parts of electrical equipment
- Determine the nominal voltage of exposed live parts
- Know the approach boundaries specified in NFPA 70E
- Identify and avoid electrical hazards associated with electrical equipment and work methods

In most instances, verifying zero voltage/energy involves crossing the arc flash protection boundary and limited approach boundary of exposed electrical parts. A special work plan or an energized electrical work permit is not required as long as proper safe work practices and personnel protective equipment (PPE) are used and no physical work is performed. (See Chapter 8, “Electrical Safety”.)

2 Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Authorized worker</td>
<td>Before beginning service and maintenance tasks under a lockout procedure, requests zero voltage verification</td>
</tr>
</tbody>
</table>

2. Qualified electrical worker

- Identifies electrical hazards and required controls
 - Determines all electrical energy sources
 - If non-electrical hazardous energies are present, coordinates with an authorized worker to ensure they are identified
 - Conducts a field survey to verify the accuracy of the documentation and correct any discrepancies
 - Reads all arc flash and other warning labels posted on the equipment
 - Gathers all test meters and test voltage sources
Step 3: Authorized worker
- **Action**: Notifies all affected workers of the intent to de-energize the equipment

Step 4: Authorized worker and qualified electrical worker
- **Important**: only SLAC qualified electrical workers may perform switching of electrical equipment.
- **Action**: De-energizes the equipment
 - Electrical worker: wears appropriate PPE for the arc flash and voltage hazards as indicated on the warning and danger labels
 - Electrical worker: turns equipment off. Opens the energy disconnect / isolation device. Attempts to operate the equipment and verifies it does not operate.
 - For equipment with viewing window, verifies all blades are fully open.
 - Switchgear-type breakers must be opened and racked out to the fully disconnected position. Rackable motor control center (MCC) buckets must be fully withdrawn with the breaker open. Multiple locks may be necessary to lock the both the breaker/bucket and the racking mechanism.
 - Authorized worker: once it is determined that equipment will not operate, locks and tags energy isolating / disconnect devices following the appropriate lockout/tagout procedure
 - Electrical worker: discharges and grounds all energy storage components

The equipment is now de-energized but not yet in an electrically safe condition.

Step 5: Qualified electrical worker
- **Action**: Performs zero voltage verification of all circuit elements and electrical parts to which workers may be exposed using appropriately rated test meter(s)
 - If not already locked on, apply a personal lockout lock(s) to the energy isolation device(s) or group lockout device
 - With a known good voltage source ensures the test meter is working
 - Tests all phase conductors or exposed circuit parts from phase to ground and then from phase to phase
 - Retests the test meter with the voltage source
 - If the electrical worker will not perform work under the lockout, then remove any personal lockout locks that were applied in the first bullet of this step. All energy isolation locks must remain in place.

The equipment is now in an electrically safe condition.

For an AC circuit perform an AC pre-test and post-test; for a DC circuit perform a DC pre-test and DC post-test.

Important: if the lockout is modified the original lockout and original zero voltage verifications are no longer valid. A new lockout is required and new zero voltage verifications must be performed when establishing the new lockout.

Note: electrical workers should use a proximity tester or other voltage testing device to periodically confirm absence of voltage at the work location (liberal use of “test before touch”) including after pauses in work or if the work site has been left unattended.
3 Forms

The following forms are required by this procedure:
- None

4 Recordkeeping

The following recordkeeping requirements apply for this procedure:
- None

5 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)
- Chapter 51, “Control of Hazardous Energy”
 - Control of Hazardous Energy: General Requirements (SLAC-I-730-0A10S-004)
 - Control of Hazardous Energy: Simple Lockout Procedure (SLAC-I-730-0A10C-003)
 - Control of Hazardous Energy: Group Lockout Procedure (SLAC-I-730-0A10C-006)
- Chapter 8, “Electrical Safety”

Other Documents
- National Fire Protection Association (NFPA) 70E, “Standard for Electrical Safety in the Workplace” (NFPA 70E)
Chapter 51: Control of Hazardous Energy

Authorized Worker Certification Procedure

1 Purpose

The purpose of this procedure is to certify annually that each authorized worker is familiar with the SLAC Control of Hazardous Energy (CoHE) program, understands his/her responsibilities under the program, and demonstrates proper lockout technique and lockout procedure compliance when performing a lockout. This procedure may also be used to validate equipment-specific lockout procedures (ELPs). Completing this procedure satisfies the ESH Course 157PRA, Control of Hazardous Energy Practical (ESH Course 157PRA), training requirement. This procedure applies to workers, supervisors, equipment custodians, LOTO inspectors, and SLAC Training.

2 Procedure

A worker must complete this procedure before first performing lock and tag at SLAC, then annually. Worker certification may coincide with an actual need to lock out equipment. Certification may be performed concurrent with an actual lockout. If the equipment the worker normally locks out is not available at the time recertification is due, the worker can be recertified by using one of the following:

- Similar equipment using the simple lockout procedure, group lockout procedure, or ELP
- Verbal and simulated actions that demonstrate understanding and competence in carrying out the assigned lockout procedure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Supervisor</td>
<td>Initiates certification process by submitting a SLAC Training Assessment (STA) assignment for Course 157PRA as Mandatory or Supervisor Required. Note: the training database will notify the worker when recertification is coming due.</td>
</tr>
</tbody>
</table>
| 2. | Worker | Completes Section 1 of the Control of Hazardous Energy: Authorized Worker Certification Form to document completion of prerequisites:
 - ESH Course 157 / ESH Course 157R
 - Master Lock Lockout/Tagout video (see ESH Course 157PRA)
 - Roles and responsibilities (review Chapter 51, “Control of Hazardous Energy” and Control of Hazardous Energy: General Requirements)
 - Personal LOTO lock(s) has(have) a single key |
<p>| 3. | Worker | Completes Section 2 of the form to document worker LOTO recent history |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Person</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Worker</td>
<td>If worker HAS NOT applied personal LOTO lock and tag to a group lockbox or to locked out equipment at least three times in the past six months then proceeds to Section 3 of the form (Step 7 of this procedure below).</td>
</tr>
<tr>
<td>5.</td>
<td>Worker</td>
<td>If worker HAS applied personal LOTO lock and tag to a group lockbox or to locked out equipment at least three times in the last six months, then course credit is granted and the certification is complete. Signs Section 2 and obtains supervisor approval (Step 6 below). Proceeds to Step 11.</td>
</tr>
<tr>
<td>6.</td>
<td>Supervisor</td>
<td>Reviews worker LOTO history to confirm that worker has applied LOTO lock and tag at least three times in the last six months. Signs and dates Section 2 of the form to approve the certification. Certification is complete. The worker will proceed to Step 11.</td>
</tr>
</tbody>
</table>
| 7. | Worker | In **Section 3** of the form demonstrates to the inspector that
- Worker is knowledgeable in the SLAC CoHE/LOTO program and understands his/her CoHE/LOTO program responsibilities
- Worker follows the assigned lockout/tagout procedure and properly applies a personal LOTO lock and tag to a group lockbox or locked out equipment |
| 8. | Inspector | In **Section 3** certifies that
- The inspector’s CoHE/LOTO training is current
- The worker is knowledgeable in the SLAC CoHE/LOTO program and understands his/her CoHE/LOTO program responsibilities
- The worker follows the assigned lockout/tagout procedure and properly applies a personal LOTO lock and tag to a group lockbox or locked out equipment |
| 9. | Inspector | Completes **Section 3** of the form |
| 10. | Inspector | ELP only: reviews ELP for accuracy and revalidates or sends redlined copy to equipment custodian for corrections |
| 11. | Worker and Inspector | Reports results by routing completed form as follows:
- Worker: mails original to SLAC Training, M/S 11, or e-mails a PDF to SLAC Training (slac-training@slac.stanford.edu)
- Worker: retains a copy of the completed form for 12 months
- Inspector: ELP only, mails any corrections to the equipment custodian
Note: the inspector or the worker’s supervisor may perform the first two steps above on behalf of the worker. |
| 12. | Equipment custodian | ELP only: Resolves discrepancies and updates the ELP to incorporate the inspector’s redlines. Retains a record copy. |
| 13. | SLAC Training |
- Credits the worker for having successfully completed ESH 157PRA
- Keeps the original signed certification form or pdf copy on file |

3 Forms

The following forms and systems are required by this procedure:
4 Recordkeeping

The following recordkeeping requirements apply for this procedure:

- The worker e-mails a PDF of the completed certification form to SLAC Training (slac-training@slac.stanford.edu). SLAC Training maintains the PDF on file; worker retains a copy for 12 months.
- The worker mails any ELP corrections to the equipment custodian, who incorporates the changes and maintains a record copy.

5 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)
- Chapter 51, “Control of Hazardous Energy”
 - Control of Hazardous Energy: General Requirements (SLAC-I-730-0A10S-004)

Other SLAC Documents

- SLAC Training Assessment (STA)
- Report: Training History
- ESH Course 157, Control of Hazardous Energy (ESH Course 157)
- ESH Course 157R, Control of Hazardous Energy (CoHE) Refresher (ESH Course 157R)
- ESH Course 157PRA, Control of Hazardous Energy Practical (ESH Course 157PRA)
The purpose of this form is to document completion of the Control of Hazardous Energy: Authorized Worker Certification Procedure (SLAC-I-730-0A10C-005). It is to be completed by the worker, supervisor, and LOTO inspector. The completed form is to be maintained by SLAC Training, a copy by the worker for 12 months.

Section 1: Worker Prerequisites for Certification (worker: complete, sign, and date)

This is to confirm that I, __________________________ (print name) Extension: __________________________

- [] I am current in ESH Course 157, Control of Hazardous Energy (CoHE)
- [] I have viewed the computer-based Master Lock Lockout/Tagout video (ESH Course 157PRA)
- [] I understand my roles and responsibilities under SLAC's CoHE program
- [] I attest that my personal LOTO lock(s) has(have) only one key

Signature: __________________________ Date: __________________________

Section 2: Worker CoHE/LOTO Recent History (worker: complete, sign, and date; supervisor approve, sign, and date)

- [] I have not applied my personal LOTO lock and tag to a group lockbox or locked out equipment at least three times in the past six months.
 - Worker: if the above box is checked skip the remainder of Section 2 and proceed directly to Section 3.
- [] I have applied my personal LOTO lock and tag to a group lockbox or locked out equipment at least three times in the past six months.
 - Worker: if the above box is checked, sign, obtain supervisor approval, and then STOP. Certification is complete. E-mail a PDF of the form to SLAC Training (slac-training@slac.stanford.edu). Retain a copy for 12 months.

Worker signature: __________________________ (sign) Date: __________________________

Supervisor name: __________________________ (print)

Supervisor signature: __________________________ (sign) Date: __________________________

Section 3: Certification

Inspector's Statement (LOTO inspector: complete, sign, and date; follow ELP validation instructions, if applicable)

- I am a SLAC CoHE authorized worker and am current in ESH Course 157/157R and ESH Course 157PRA.
- Through discussion and observation I confirm that the worker is knowledgeable in the SLAC CoHE/LOTO program and understands his/her CoHE/LOTO program responsibilities.
- The worker followed the assigned procedure and properly applied a personal LOTO lock and tag to a group lockbox or locked out equipment.

Lockout procedure type (check one):
- [] Simple
- [] Equipment-specific (ELP)
- [] Group
- [] Simulated

Inspector signature: __________________________ (sign) Date: __________________________

Worker: e-mail a PDF of the form to SLAC Training (slac-training@slac.stanford.edu). Retain a copy for 12 months.

ELP Validation

Inspector: if the worker performed lockout under an ELP, identify applicable ELP and status (check one box) and follow additional instructions:

- [] ELP is correct and has been revalidated in the past 12 months. *(No action required)*
- [] ELP is correct but has **not** been revalidated in the past 12 months. *(Sign the ELP cover page and mail to equipment custodian)*
- [] ELP is incorrect. *(Mail redlined copy to equipment custodian)*
ESH Manual Chapter 51, “Control of Hazardous Energy”, is being revised.

For current forms and templates, please see this site:

Control of Hazardous Energy (CoHE) Safety Program > CoHE Documents > Forms and Templates

For questions and comments, contact Keith Jobe, Electrical Safety Officer (ext. 2084, Keith.Jobe@slac.stanford.edu).