Chapter 43

Industrial Wastewater

Chapter Outline

1. Overview
 1.1 Hazards/Impacts
2. Scope
3. Standards
4. Definitions
5. Requirements
 5.1 General
 5.1.1 Types of Discharges
 5.1.2 Permit Requirements
 5.1.3 Industrial Wastewater Best Management Practices
 5.1.4 Sanitary Sewer System
 5.1.5 Roles and Responsibilities
 5.2 Procedures and Specific Requirements
 5.2.1 Permitting
 5.2.2 Best Management Practices
 5.2.3 Sampling
 5.3 Training
6. Exhibits
7. References
8. Implementation
9. Ownership

This chapter was last reviewed for currency 4/10/2015. It is being updated as of August 2022.
1 Overview

This chapter outlines SLAC programs and responsibilities required to comply with the rules and regulations regarding industrial wastewater and sanitary sewers administered by the South Bayside System Authority (SBSA) and the West Bay Sanitary District (WBSD). The relationship between SLAC and the SBSA and the WBSD is formalized in discharge regulations and wastewater discharge limits set forth in a permit. These limits are necessary to protect the sanitary sewer system and treatment plant as well as its operators, and are based on the ability of the sewage treatment plant to treat wastewater to safe levels before discharge to the San Francisco Bay.

1.1 Hazards/Impacts

Pouring hazardous material down sinks or floor drains could cause permit limits to be exceeded. Hazards associated with discharging industrial wastewater into the sewer system in excess of permit limits include damaging the water treatment plant and polluting water resources.

Factors that may impact SLAC include increased restrictions and conditions on quality and quantity of discharges to the sanitary sewer. The SLAC industrial wastewater program addresses these through current compliance and the establishment of a management system that can adapt to a more restrictive regulatory environment in the future.

2 Scope

The requirements of this chapter apply to all personnel, including SLAC employees, subcontractors, users, and visitors.

This chapter describes the SLAC industrial wastewater program requirements and conditions as specified in the Mandatory Wastewater Discharge Permit issued by the SBSA.

This chapter also includes applicable best management practices (BMPs) that help keep SLAC wastewater within permit limits.

This chapter pertains only to wastewater discharged to the sanitary sewer. For regulations and requirements regarding water that enters the storm drain system, see Chapter 26, “Stormwater”.

The wastewater discharge permit accidental release plan requirement is met by the Consolidated Chemical Contingency Plan (CCCP). The CCCP fulfills numerous emergency planning requirements, including those for a hazardous materials business plan (HMBP), which can be used in lieu of a separate accidental release plan.

3 Standards

SLAC adheres to the following standards for its industrial wastewater program.

- Title 33, United States Code, “Navigation and Navigable Waters”, Chapter 26, “Water Pollution Prevention and Control”
 - Section 1251, “Congressional Declaration of Goals and Policy” (33 USC 1251)
 - Section 1311, “Effluent Limitations” (33 USC 1311)
 - Section 1314(g), “Guidelines for Pretreatment of Pollutants” (33 USC 1314g)
 - Section 1317, “Toxic and Pretreatment Effluent Standards” (33 USC 1317)
 - Section 1318, “Records and Reports; Inspections” (33 USC 1318)
 - Section 1319, “Enforcement” (33 USC 1251)
 - Section 1341(a), “Compliance with Applicable Requirements; Application; Procedures; License Suspension” (33 USC 1341a)

- Title 42, United States Code, “The Public Health and Welfare”
 - Chapter 82, “Solid Waste Disposal” (42 USC 6901 and following)

 - Part 403, “General Pretreatment Regulations for Existing and New Sources of Pollution”
 - Part 413, “Electroplating Point Source Category”
 - Part 433, “Metal Finishing Point Source Category”

- DOE Order 5400.5, “Radiation Protection of the Public and the Environment”

 - Section 30287, “Disposal by Release into Sanitary Sewerage Systems” (17 CCR 30287)

7 http://www.directives.doe.gov/pdfs/doe/doetext/oldord/5400/o54005c2.html
4 Definitions

Best management practice (BMP). Engineering or administrative actions to manage properly activities that have the potential to impact the sanitary sewer system

Sanitary sewer. A pipe or conduit that carries wastewater and to which storm and surface water are not intentionally admitted. The sanitary sewer at SLAC handles domestic and industrial wastewater discharges from SLAC operations.

Solvent management plan (SMP). A site-specific plan that identifies toxic organic compounds used at a facility and describes their proper use, storage, and management

South Bayside System Authority (SBSA). Wastewater treatment facility that serves southern San Mateo county, including SLAC

Total toxic organics (TTO). Summation of all quantifiable values of designated toxic organics in the wastewater discharge

Volatile organic compounds (VOCs). Organic compounds that have high enough vapor pressures under normal conditions to vaporize significantly and enter the atmosphere

Wastewater constituents. The individual chemical, physical, bacteriological, and radiological parameters, including volume and flow rate and such other parameters that serve to define, classify, or measure the contents, quality, quantity, or strength of wastewater

Wastewater discharge.

9 “California Code of Regulations”, http://cer.oal.ca.gov/
10 “California Law”, http://www.leginfo.ca.gov/calaw.html
Non-routine. Any water not included in the any current permit. Disposal of any non-routine discharge requires a non-routine permit

Prohibited. A discharge explicitly prohibited under the terms of a permit, including spills

Routine. Includes any non-hazardous wastewater that is routinely discharged during normal operations. There are 20 wastewater discharge types described in the main SLAC permit. Examples include cooling tower blow down, low conductivity water (LCW) from cooling systems, groundwater treatment facility discharges, and cafeteria wastewater.

Wastewater, industrial. The liquid wastes from industrial processes

West Bay Sanitary District (WBSD). The West Bay Sanitary District owns and maintains the sewer mains and pump stations. WBSD along with the cities of Belmont, San Carlos, and Redwood City are constituent members of the joint powers authority that owns and operates the SBSA (see SBSA above)

5 Requirements

5.1 General

The main requirement for SLAC is to comply with applicable rules and regulations regarding industrial wastewater, generally expressed in the permit. Staying in compliance involves correctly characterizing discharges, observing permitting requirements, and using BMPs where appropriate to stay within permit limits.

5.1.1 Types of Discharges

All wastewater discharges are categorized as routine (listed in a current SLAC permit), non-routine (eligible to be discharged under a non-routine permit), or prohibited, as described below.

5.1.1.1 Routine Discharges

The SLAC wastewater discharge permit with the SBSA and WBSD characterizes acceptable routine discharges to the sanitary sewer in terms of type and flow. These discharges are itemized in Industrial Wastewater: Permitted and Prohibited Discharge Reference.13 Any process change that significantly affects the constituents, strength, volume, temperature, or discharge period of the wastewater must be reported to the IW program manager to determine

- The type of permit required (update the existing permit or apply for a non-routine permit)
- Notification requirements (SBSA and WBSD)

5.1.1 Non-routine Discharges

Certain discharges not covered under the existing permit may require evaluation to determine the required type of permit or the appropriate disposal method if discharge to the sanitary sewer is prohibited. Process owners must contact the IW program manager for assistance.

Note For discharges that must be disposed of as a California-regulated waste, see Chapter 17, “Hazardous Waste”. 14

5.1.1.3 Prohibited Discharges

SLAC’s permit characterizes prohibited discharges, which include any discharge that endangers human life or safety, causes a fire or explosion, contains hazardous materials, causes a detrimental environmental impact, or obstructs flow. For a complete list of prohibited discharges, see Industrial Wastewater: Permitted and Prohibited Discharge Reference. 15

All spills or discharges to the sanitary sewer system that violate permit conditions must be reported to the IW program manager, who will ensure the spill or discharge is reported to the SBSA, as required. Any spills containing radioactive water or constituents must also be reported to the Radiation Protection Department (RP). For more information on handling spills, see Chapter 16, “Spills”. 16

5.1.2 Permit Requirements

SLAC’s wastewater discharge permit with the SBSA and WBSD characterizes acceptable routine discharges to the sanitary sewer in terms of type and flow.

5.1.2.1 Application and Renewal

New Routine Discharges

The IW program manager must characterize all new routine discharges and add them to the permit.

Routine Discharges

The mandatory permit is issued for one year and may be renewed automatically for successive one-year terms for up to five years if all sampling, metering, and reporting stipulations are met (see below). In addition, a solvent management plan (SMP) is required pursuant to a permit modification issued by SBSA in April of 2001, which directed dischargers to generate such a plan in lieu of continued monitoring for total toxic organics (TTOs). For SLAC’s SMP, see Industrial Wastewater: Solvent Management Plan. 17

17 [forthcoming]
The permit can be revised at any time for the purposes of protecting workers and sanitary sewer facilities and to accommodate new regulations that encompass the sewage treatment plant or the sanitary district.

Non-routine Discharges

Non-routine discharges require a non-routine permit. Approval for a wastewater discharge permit must occur prior to discharge and may include fees and constraints on quantity and timing of discharge. The IW program manager will assist process owners and personnel in

- Characterizing non-routine wastewater
- Applying for a non-routine discharge permit
- Coordinating the discharge with the SBSA and WBSD

5.1.2.2 Metering

Wastewater volume is measured by meters located as required in order to

- Monitor the total flow from the SLAC site (SLAC’s contract with WBSD specifies a total industrial and sanitary flow; if this flow is exceeded, additional charges apply)
- Monitor the volume discharged from the Metal Finishing Pretreatment Facility (MFPF)
- Calculate total wastewater and constituents of concern entering the sanitary sewer (flow measurements together with sample analysis are the basis for total flow and total constituent calculations)

Meters are inspected, calibrated, and maintained by the Conventional and Experimental Facilities (CEF) Department.

Note The volume of any radioactive water discharged to the sanitary sewer is reported to RP. Such discharges are tracked by RP to ensure that permit limits are not exceeded.

5.1.2.3 Sampling

Sample collection frequency, constituent analysis, and reporting are specified in the permit. Samples are collected by the SBSA and SLAC, as indicated below.

SBSA Sampling Events

The SBSA monitors compliance by collecting quarterly composite and grab samples of SLAC’s discharge into the sanitary sewer. Samples are analyzed for a variety of constituents, including metals and selected VOCs.

SLAC Sampling Requirements

SLAC’s permit includes one location (MFPF) where potentially hazardous wastewater is treated prior to discharging to the sanitary sewer. Samples from this location must be analyzed for constituents of concern two times per year.

Radioanalysis of wastewater with known or suspected radiological analytes must be performed prior to discharge to the sanitary sewer in order to ensure that SLAC is within the permit’s annual discharge limits.
5.1.2.4 Reporting

Routine and accidental reporting requirements for SLAC’s discharge permits and radioactive releases are itemized below. All reports are submitted to the SBSA and WBSD.

Mandatory Discharge Permit Reporting Requirements

SLAC is required to submit a semi-annual self-monitoring report to SBSA by January 31 and July 31 of each year that encompasses the conditions of the permit. This report also includes results from SLAC’s semi-annual sampling event.

In addition, the SBSA requires a certification statement included in the self-monitoring report that states that

- SLAC fully implements the SMP
- No concentrated toxic organics were released to the sewer system during the six month reporting period.

Radioactive Releases Reporting Requirements

RP submits a quarterly report to the SBSA that provides radioanalysis results, volume of radioactive water released to the system, and total amount of radioactivity.

Accidental Release Reporting Requirements

- **All spills.** All spills or discharges to the sanitary sewer system that violate permit conditions must be reported to the IW program manager, who will report the spill or discharge to the SBSA, as required.
- **Radioactive spills.** Any releases containing radioactive water or constituents must be reported to RP in addition to reporting to the IW program manager.

5.1.3 Industrial Wastewater Best Management Practices

Best management practices (BMPs) are industry standards that are accepted by regulatory agencies as a way to protect the environment. Industrial wastewater BMPs are not mandatory, but their implementation is a key to SLAC staying within wastewater permit discharge limits.

5.1.4 Sanitary Sewer System

5.1.4.1 Maintenance

The sanitary sewer system must be maintained in compliance with the discharge permit. The Conventional and Experimental Facilities (CEF) Department will meet this responsibility.

5.1.4.2 Connections

All new connections to the system must be approved by CEF.
5.1.4.3 Construction

The Chemical and General Safety (CGS) Department must review construction projects for potential to affect the system.

5.1.5 Roles and Responsibilities

5.1.5.1 Industrial Wastewater Program Manager

The IW program manager will

- Act as the primary point of contact (POC) for the SBSA and WBSD
- Address any compliance issues concerning the SLAC mandatory wastewater discharge permit, including ensuring that spills that violate permit requirements are reported
- Prepare, submit, and track non-routine discharge applications
- Prepare the semi-annual self-monitoring report of wastewater discharge and SMP certification statement for submittal to the SBSA and WBSD
- Review new equipment and modified processes for compliance with the wastewater discharge permit conditions
- Coordinate with RP on all matters concerning wastewater that potentially contains radioactivity. This includes meeting permit conditions, system design and implementation, and reporting.

5.1.5.2 Conventional and Experimental Facilities Department

CEF must approve connections to the sanitary sewer. No portion of the sanitary sewer system may be blocked, either temporarily or permanently, without CEF approval. CEF will

- Review for approval any new connections to the potable water system, sanitary sewer, or storm drain system
- Clean the cafeteria grease traps and coordinate with the WBSD for grease trap inspections
- Coordinate with the IW program manager and RP to ensure wastewater discharges, including modified or new connections, are in compliance with permit requirements
- Inspect, clean, service, calibrate, and maintain flow meters required under the mandatory wastewater discharge permit. This must be done at least annually and as required for proper operation
- Maintain the SLAC sanitary sewer system. This includes replacement, repair, cleaning and flushing, removing blockages, and implementing preventive maintenance programs
- Assess capacity issues with the addition of new discharges and plan for system upgrades and expansion

5.1.5.3 Mechanical Fabrication Department

The Mechanical Fabrication Department (MFD) operates a wastewater treatment plant that removes pollutants from industrial process effluents prior to discharge to the sanitary sewer system. MFD will

- Ensure that discharges of treated wastewater for the MFPF in Building 38 comply with permit limits
- Comply with monitoring and record-keeping requirements for operations under their control. This includes documenting procedures, process upsets and changes, and sampling results. Any process upsets and changes must be reported to the IW program manager as soon as possible.

5.1.5.4 Radiation Protection Department

RP will ensure that any wastewater that may be radiologically active meets regulatory requirements. This includes, but is not limited to the RP

- Performing radioanalysis of wastewater with known or suspected radiological analytes prior to discharge to the sanitary sewer
- Summarizing radioanalysis results in a quarterly report to the SBSA
- Reviewing permit updates and renewals with the IW program manager
- Reviewing and approving any new or modified systems or discharges for known or suspected radiological analytes

Note: Sample collection and delivery to RP are the responsibility of the group generating the wastewater.

5.1.5.5 Waste Management Group

The Waste Management Group (WM) is responsible for the handling and disposal of industrial wastewater that is a regulated, non-radiological waste that can not be discharged to the sanitary sewer system under the mandatory wastewater discharge permit or a non-routine wastewater discharge permit. For information on characterizing and labeling hazardous waste, see Chapter 17, “Hazardous Waste”. 19

5.1.5.6 Chemical and General Safety Department

The Chemical and General Safety (CGS) Department is responsible for reviewing construction projects that may impact the sanitary sewer system.

5.1.5.7 Project Managers and University Technical Representatives

Project managers and university technical representatives (UTRs) are required to know and adhere to all SLAC ES&H policies for systems or operations, and they are responsible for subcontractors under their control. Each person will

- Implement construction management practices and perform construction activities in compliance with regulatory requirements and BMPs

- Notify the IW program manager of any unplanned discharges to the sanitary sewer system arising from work conducted under project manager or UTR direction
- Obtain approval from CEF to make new connections to the potable water system, sanitary sewer, or storm drain systems. It is desirable to obtain approval early in the design process

5.1.5.8 Managers and Supervisors

SLAC managers and supervisors are responsible for implementing ES&H policy with regard to complying with the conditions of SLAC’s discharge permit. Managers and supervisors will

- Add BMPs into standard operating procedures and work practices for any processes or storage areas that require them
- Ensure that operations in buildings and areas under their control, including wastewater discharges, comply with SLAC ES&H requirements
- Identify processes that may be sources of non-permitted discharges to the sanitary sewer system and report them to the IW program manager for evaluation and possible inclusion in the permit
- Instruct employees on proper disposal and storage of material to prevent accidental releases to the sanitary sewer
- Instruct employees on proper disposal of accumulated water and on the process for getting approval for a non-routine discharge to the sanitary sewer

5.1.5.9 Personnel

SLAC personnel will

- Learn and comply with ES&H policies, practices, procedures and requirements regarding allowable (permitted) discharges to the sanitary sewer
- Coordinate with the IW program manager when evaluating the installation of new effluent-producing processes. The IW program manager must review and approve all new or non-routine discharges to the sanitary sewer system prior to discharge
- Coordinate with WM to dispose of chemicals and hazardous waste
- Report accidental discharges to the sanitary sewer immediately. For more information see Chapter 16, “Spills”. 20
- Contact CEF before making any changes to the sanitary sewer
- Coordinate with CEF for proper connection of processes to the sanitary sewer system

5.2 Procedures and Specific Requirements

5.2.1 Permitting

5.2.1.1 Routine Discharges

SLAC’s permit with the SBSA and WBSD specify wastewater discharge conditions for routine discharges. These are listed in Industrial Wastewater: Permitted and Prohibited Discharge Reference.\(^{21}\)

5.2.1.2 Non-routine Discharges

For any non-routine discharges, the existing permit must be updated or a non-routine permit must be applied for and issued. For additional information, see Industrial Wastewater: Discharge Characterization Guidelines.\(^{22}\)

5.2.2 Best Management Practices

Implementing BMPs for operations that produce industrial wastewater is essential to staying within SLAC’s industrial wastewater discharge permit limits.

- BMPs for machine, maintenance, and craft shops are listed in Industrial Wastewater: Machine, Maintenance, and Craft Shop Best Management Practices.\(^{23}\)
- BMPs for laboratories are listed in Industrial Wastewater: Wet or Chemical Lab Best Management Practices.\(^{24}\)
- BMPs for pipe flushing are listed in Industrial Wastewater: Treatment of Pipe Flushing Water Best Management Practices.\(^{25}\)
- BMPs for the cafeteria are listed in Industrial Wastewater: Cafeteria Best Management Practices.\(^{26}\)

Note For work that is performed outside, such as power washing of buildings, shielding material, equipment, and vehicles, see the BMPs in Chapter 26, “Stormwater”, to ensure that no waste water enters the storm drains.\(^{27}\)

5.2.3 Sampling

Sampling is carried out by specified entities at regular intervals. For details see Industrial Wastewater: Wastewater Sampling Requirements.28

5.3 Training

There are no specific training requirements for the industrial wastewater program.

6 Exhibits

- Industrial Wastewater: Implementation Plan (SLAC-I-750-0A16M-006)29
- Industrial Wastewater: Permitted and Prohibited Discharge Reference (SLAC-I-750-0A16T-006)30
- Industrial Wastewater: Discharge Characterization Guidelines (SLAC-I-750-0A16T-007)31
- Industrial Wastewater: Wastewater Sampling Requirements (SLAC-I-750-0A16S-008)32
- Industrial Wastewater: Solvent Management Plan [plan being revised]33
- Industrial Wastewater: Wet or Chemical Labs Best Management Practices (SLAC-I-750-0A16E-016)34
- Industrial Wastewater: Cafeteria Best Management Practices (SLAC-I-750-0A16E-017)36
- Consolidated Chemical Contingency Plan (SLAC-I-730-3A86H-008)38

33 [forthcoming]
34 http://www-group.slac.stanford.edu/esh/eshmanual/references/iwBMPLab.pdf
7 References

SLAC Environment, Safety, and Health Manual (SLAC-I-720-0A29Z-001)39

- Chapter 9, “Radiological Safety”40
- Chapter 16, “Spills”41
- Chapter 17, “Hazardous Waste”42
- Chapter 26, “Stormwater”43
- Chapter 40, “Hazardous Materials”44

8 Implementation

The requirements of this chapter will be implemented according to the schedule in Industrial Wastewater: Implementation Plan.45

9 Ownership

Department: Environmental Protection

Program: Industrial Wastewater

Owner: Program Manager, Darrin Gambelin

38 http://www-group.slac.stanford.edu/esh/documents/CCCP.pdf
39 http://www-group.slac.stanford.edu/esh/eshmanual/
40 http://www-group.slac.stanford.edu/esh/general/radiological_safety/policies.htm
41 http://www-group.slac.stanford.edu/esh/environment/spills/policies.htm
42 http://www-group.slac.stanford.edu/esh/environment/hazardous_waste/policies.htm
43 http://www-group.slac.stanford.edu/esh/environment/hazardous_waste/policies.htm
44 http://www-group.slac.stanford.edu/esh/hazardous_substances/haz_materials/policies.htm
The requirements of Chapter 43, “Industrial Wastewater”, will be phased in according to the following schedule.

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Section Title</th>
<th>Requirement Note</th>
<th>Effective Date</th>
<th>Schedule Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1</td>
<td>Types of Discharges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1.1</td>
<td>Routine Discharges</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.1.1.2</td>
<td>Non-routine Discharges</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.1.1.3</td>
<td>Prohibited Discharges</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.1.1.4</td>
<td>Accidental Discharges</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.1.2</td>
<td>Permit Requirements</td>
<td>New permit requires implementation of a “slug discharge plan.” This plan will be developed from existing site plans and implemented.</td>
<td>6/1/2007</td>
<td>New Permit Issued 12/16/06</td>
</tr>
<tr>
<td>5.1.2.1</td>
<td>Application and Renewal</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.1.2.2</td>
<td>Metering</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.1.2.3</td>
<td>Sampling</td>
<td></td>
<td>12/16/2006</td>
<td>New sampling requirements have been implemented</td>
</tr>
<tr>
<td>5.1.2.4</td>
<td>Reporting</td>
<td></td>
<td>12/16/2006</td>
<td>New reporting requirements have been implemented</td>
</tr>
<tr>
<td>Section Number</td>
<td>Section Title</td>
<td>Requirement Note</td>
<td>Effective Date</td>
<td>Schedule Note</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Industrial Wastewater Best Management Practices</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.4</td>
<td>Sanitary Sewer System</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.4.1</td>
<td>Maintenance</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.4.2</td>
<td>Connections</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.4.3</td>
<td>Construction</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5</td>
<td>Roles and Responsibilities</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.1</td>
<td>Industrial Wastewater Program Manager</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.2</td>
<td>Conventional and Experimental Facilities Department</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.3</td>
<td>Mechanical Fabrication Department</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.4</td>
<td>Radiation Protection Department</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.5</td>
<td>Waste Management Group</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.6</td>
<td>Chemical and General Safety Department</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.7</td>
<td>Project Managers and University Technical Representatives</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.8</td>
<td>Managers and Supervisors</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5.9</td>
<td>Personnel</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Procedures and Specific Requirements</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.1</td>
<td>Permitting</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Routine Discharges</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Non-routine Discharges</td>
<td>Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Number</td>
<td>Section Title</td>
<td>Requirement Note</td>
<td>Effective Date</td>
<td>Schedule Note</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Best Management Practices</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>5.2.3</td>
<td>Sampling</td>
<td></td>
<td>12/16/06</td>
<td>New sampling requirements have been implemented</td>
</tr>
<tr>
<td>5.3</td>
<td>Training</td>
<td></td>
<td>Immediate</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 43, "Industrial Wastewater", is being updated. The exhibit, Industrial Wastewater: Permitted and Prohibited Discharge Reference, has been replaced by this excerpt from the current wastewater permit.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Discharge Location(s)</th>
<th>Discharge Point</th>
<th>Average Discharge in Gallons per Day (gpd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooling Tower (CT) Blowdown</td>
<td>CT's 015, 101, 404, 905, 1201, 1202, 1701</td>
<td>Sand Hill Road, Alpine Road</td>
<td>10,000³</td>
</tr>
<tr>
<td>2</td>
<td>Metal Finishing Pretreatment Facility (MFPF)</td>
<td>B038</td>
<td>Sand Hill Road</td>
<td>5,000</td>
</tr>
<tr>
<td>3</td>
<td>Groundwater from Underground Tunnels, Sumps and Vaults</td>
<td>sitewide</td>
<td>Sand Hill Road, Alpine Road</td>
<td>4,600</td>
</tr>
<tr>
<td>4</td>
<td>Groundwater Extraction Systems</td>
<td>B038 and B055</td>
<td>Sand Hill Road</td>
<td>1,000</td>
</tr>
<tr>
<td>5</td>
<td>Water from Containment Structures, and Storm Drain and Pavement Cleaning Activities</td>
<td>E of CT1781</td>
<td>Alpine Road or Reuse</td>
<td>1,000</td>
</tr>
<tr>
<td>6</td>
<td>Steam Cleaning Red Oil-Water Separator at Motor Pool</td>
<td>SE corner of B06 (outside)</td>
<td>Sand Hill Road</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>Low-Conductivity Water (LCW) from Cooling Systems</td>
<td>sitewide</td>
<td>Sand Hill Road, Alpine Road</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>SLAC Cafeteria</td>
<td>B055</td>
<td>Sand Hill Road</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>Construction Water</td>
<td>sitewide</td>
<td>Sand Hill Road, Alpine Road</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>Pipe and Chiller Flushing</td>
<td>Various Locations</td>
<td>Sand Hill Road, Alpine Road</td>
<td>100³</td>
</tr>
<tr>
<td>11</td>
<td>Fire Water Testing</td>
<td>sitewide</td>
<td>Sand Hill Road, Alpine Road</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>Boiler Flushing</td>
<td>B025, B050, B015, B061, B750, Sector 10, Sector 29</td>
<td>Sand Hill Road, Alpine Road</td>
<td>50³</td>
</tr>
<tr>
<td>13</td>
<td>Laboratory Solutions</td>
<td>sitewide</td>
<td>Sand Hill Road, Alpine Road</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>Building 006 Clean Room</td>
<td>B006</td>
<td>Sand Hill Road</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Emergency Eyewash and Shower Testing/Inspection</td>
<td>sitewide</td>
<td>Sand Hill Road, Alpine Road</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>Building 015 All-in-One Washer, Dishwasher and Ultrasonic Cleaner</td>
<td>B015</td>
<td>Alpine Road</td>
<td>1.5</td>
</tr>
<tr>
<td>17</td>
<td>LCW from Krytron Tubes</td>
<td>B044</td>
<td>Sand Hill Road</td>
<td>0.6</td>
</tr>
<tr>
<td>18</td>
<td>Test Stand Cooling Water</td>
<td>B044</td>
<td>Sand Hill Road</td>
<td>0.4</td>
</tr>
<tr>
<td>19</td>
<td>Water from Wet-Blasting Operations</td>
<td>B123</td>
<td>Sand Hill Road</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>Monitoring Well Purge Water</td>
<td>100+ locations</td>
<td>Alpine Road</td>
<td>0.1</td>
</tr>
<tr>
<td>21</td>
<td>Deflector Micro-abrastion Facility and Ultrapure Water System</td>
<td>B057</td>
<td>Sand Hill Road</td>
<td>11,000</td>
</tr>
</tbody>
</table>

Notes:

¹ Estimated average daily volume, calculated over a one year period. Actual daily discharges may vary. Refer to wastewater generating activity descriptions for additional details.

² Annual preventative maintenance that requires full draining of coolings towers, boilers, and chillers are included as routine discharges under this permit, but will be coordinated as a courtesy with Silicon Valley Clean Water (SVCW) and West Bay Sanitary District (WBSD). The average daily discharge shown may be exceeded for large draining events.

³ Routine boiler water discharges will be less than 50 gpd. Annual preventative maintenance activities will require discharge of the entire volume of the boiler (largest boiler is 2,448 gallons), plus additional domestic water to bring the water temperature to below 120 degrees Fahrenheit. As a courtesy to WBSD, boiler preventative maintenance activities that require boiler draining will be coordinated with WBSD.
1 Cooling Tower Blowdown

Description

Water circulates through the cooling water system, drawing heat from various sources such as air conditioners and experimental equipment, and expelling the heat at cooling towers. The cooling water remains contained in pipes and is cooled with circulated domestic water via counter-current heat exchangers. The circulated domestic water within the tower's bulk water system becomes heated and evaporates, which concentrates the amount of dissolved solids and increases the problems of corrosion, scaling and fouling.

Water treatment chemicals are added to the cooling water to control the problems of corrosion, scaling and bio-fouling. Corrosion affects the metal pipes and components of the system. Sulfuric acid is used to adjust the pH of the domestic water used at SLAC. Scaling affects the heat transfer pipes and pumps, hindering the efficiency of the system. Variables such as hardness, pH, temperature and alkalinity determine the amount of scaling and each must be controlled. The chemicals are dispensed using an automated system to minimize both handling and quantities of additives required.

Location

CT-101 is located along the Loop Road south of Building 44 (Test Laboratory). CT-1701 is located south of End Station B, adjacent to the Research Yard. CT-1200 (currently offline) is located at Sector 1 (far west end of the Linac), CT-1201 is at Sector 9 (west end of the Linac), CT-1202 is at Sector 22 (just west of I-280) and CT-905 is located at Sector 4 at the Cryoplant (west end of Linac). CT-015 is a small unit for local use and is located behind Building 15. CT-404, is located in the northeast corner of the Research Yard, adjacent to Beam Dump East.

Flow

SLAC discharges blowdown water from the cooling towers to the sanitary sewer. Blowdown volume and frequency are dependent on research activities, climatic conditions, and the characteristics of the makeup water, but is typically about 5 percent of makeup water volume. SLAC also performs maintenance of the cooling towers, which involves draining the towers on an annual basis. Emergency repairs may also require draining of a tower.

Characterization

Blowdown water with elevated concentrations of suspended and dissolved solids, and low concentrations of chemicals added to inhibit corrosion, scaling, and fouling of cooling-system piping.

Point of Discharge

CT101, CT1200, CT1201, CT1202, CT905 – Sand Hill Road

CT1701, CT-015, CT-404 – Alpine Road
2 Metal Finishing Pretreatment Facility

Description

The Metal Finishing Pretreatment Facility (MFPF) pretreats:

- All wastewaters associated with the Plating Shop operations. Operations and equipment include process tanks (including cyanide room tanks), air scrubbers, laboratory sinks, effluent from the regeneration of de-ionized water, and steam-cleaning runoff.
- Non-hazardous wastewaters generated by flushing heat-exchanger and cooling system piping.
- Solutions from the regeneration of de-ionized water.
- Miscellaneous non-hazardous wastewaters that require pH adjustment or reduction of metals concentrations in order to meet permit limits.

Location

Building 38, west of the Heavy Fabrication Building (Building 26) and east of the Plating Shop (Building 25) and the Chemical Storage Area (Building 36)

Flow

The MFPF operates continuously during normal business hours, typically for an 8-hour shift, and may be operated off-hours as needed. Along with analytical results, monthly averages and maximum flow per month are reported to Silicon Valley Clean Water (SVCW) and West Bay Sanitary District (WBSD) every six months in the required semiannual self-monitoring report.

Characterization

Industrial wastewater containing low concentrations of metals, pre-treated to meet all mandatory wastewater discharge permit requirements.

Point of Discharge

Treated wastewater overflows a weir at the top of the clarifier. This flow is hard plumbed to the sanitary sewer at the north end of the MFPF.
3 Groundwater from Underground Tunnels, Sumps and Vaults

Description

SLAC has many underground buildings, vaults, and other structures that extend below the elevation of the groundwater table, at least during the wet season. Some of the groundwater, depending on the location and characteristics, may discharge into the sanitary sewer, or be pumped out and processed through the non-hazardous water treatment unit prior to re-use in Cooling Tower 1701, or discharged to the sanitary sewer.

Tunnels

Groundwater collects in sumps in tunnels, and must be removed continually to protect sensitive electronic equipment.

Vaults

Accumulated groundwater is removed from electrical vaults and other structures as needed, usually to facilitate access for repair work or to allow, for example, cable pulling to occur.

Location

Primary underground structures that discharge to the sanitary sewer include the Linear Accelerator (LINAC), Beam Switch Yard (BSY), the Positron-Electron Project (PEP) and the Stanford Positron-Electron Asymmetric Ring (SPEAR) at the Stanford Synchrotron Research Laboratory (SSRL). In addition, numerous electrical utility vaults exist throughout the site.

Characterization

Groundwater contains elevated concentrations of sulfates, total dissolved solids, and calcium hardness. Samples are collected regularly at some locations for radioanalysis to monitor this flow. The radioanalysis monitoring data are summarized in a quarterly self-monitoring report submitted to Silicon Valley Clean Water.

Point of Discharge

Because this is a facility-wide activity, discharge locations are to the sanitary sewer connection closest to the sump or vault being drained.
4 Groundwater Extraction Systems

Description

Former Hazardous Waste Storage Area Dual Phase Extraction System

The Former Hazardous Waste Storage Area (FHWSA) groundwater/soil vapor dual phase extraction (DPE) system was designed to reduce the concentrations of volatile organic compounds (VOCs) and 1,4-dioxane in soil, groundwater, and soil vapor at the FHWSA site and mitigate lateral migration of impacted groundwater. The system utilized 21 DPE wells (including temporary wells MW-25 and MW-92) and four vacuum-enhanced groundwater extraction (GWE) wells. The full-scale FHWSA DPE system began operations from 2006 until 2016 at which time it was determined that the FHWSA DPE system was found to have effectively remediated the groundwater and deeper soil at the FHWSA but was less effective in remediating VOCs in the shallow clayey soil. The San Francisco Bay Regional Water Quality Control Board (RWQCB) approved a curtailment request in April 2018 of the FHWSA remediation system and excavation of the VOC impacted shallow soil layer. The excavation of the shallow clayey soil at the FHWSA was completed in October of 2018 and included removal of much of the DPE well and piping infrastructure (see the attached system diagram for details).

A three-year rebound testing phase began at the FHWSA in 2018 and was completed in February 2021. A draft three-Year Rebound Test Report, completed in 2021, recommended to the RWQCB (pending review and concurrence), that the FHWSA remediation system remain shut down. No further FHWSA DPE discharges is anticipated at this time.

Former Solvent Underground Storage Tank Groundwater Extraction and Treatment System

The Former Solvent Underground Storage Tank (FSUST) DPE and treatment system is designed to reduce the concentrations of VOCs and semi-volatile organic compounds (SVOCs) in soil, groundwater and soil vapor at the FSUST site and mitigate lateral migration of impacted groundwater. The FSUST system utilizes nine DPE wells and one GWE well and has been in full-scale DPE operation since 2007. The FSUST DPE system is currently being refurbished, with the system operating using a subset of DPE wells, typically 4 DPE wells, to focus chemical mass removal from the subsurface residual source area. When refurbishment is completed, full scale operation of the system is expected, which includes two temporary DPE wells added in October 2020 (see the attached system diagram for details). Extracted groundwater is treated by granular activated carbon and discharged after treatment under permit to the sanitary sewer. Extracted soil vapor is discharged unabated to the atmosphere under a permit issued by the Bay Area Air Quality Management District (BAAQMD).

Plating Shop Area Groundwater Extraction System

The Plating Shop Area (PSA) DPE and treatment system is designed to reduce the concentrations of VOCs and 1,4-dioxane in soil, groundwater and soil vapor at the PSA site and mitigate lateral
migration of impacted groundwater. The PSA system, which began operation in 2011, included 18 active DPE wells and eight vacuum-enhanced GWE wells. The eight GWE wells have been off since December 2014, as part of a long-term rebound test. In February 2019, SLAC developed a plan to optimize DPE operations by extracting groundwater from focused areas with only four of the 18 DPE wells in operation. Extracted groundwater from the active DPE wells had been treated using an air stripper but was bypassed on April 24, 2019, after it was determined that the levels of VOCs in the extracted groundwater were and are expected to remain well below the applicable sanitary sewer permitted limits. Extracted soil vapor is discharged unabated to the atmosphere under permits issued by the BAAQMD.

Test Lab/Central Lab (TL/CL) Groundwater Extraction System

There are seven DPE wells at the TL/CL area where DPE began in 2011. Initially, extracted groundwater was treated using an air stripper. Shortly after the start of DPE operations, due to low VOC concentrations, extracted groundwater was discharged directly to the sanitary sewer under permit. The DPE system at the TL was shut down in December 2012 for rebound testing and remains off, consistent with the recommendation in the Five-Year Review Report that no further remediation for soil or groundwater in the TL area is required.

DPE operations were shut down at the CL in October 2018 for a system repair and remain off due to the significant progress in the remediation at the CL site. The soil vapor extraction (SVE) portion of the DPE system at the CL was restarted in 2020 and continues to be operated to further remediate a small, localized area for shallow soil vapor, as concurred by the RWQCB in 2019. The GWE portion of the DPE system at the CL is no longer used, consistent with the recommendation in the Five-Year Review Report that no further remediation of groundwater in the CL area is required.
5 Water from Containment Structures, and Storm Drain and Pavement Cleaning Activities

Description

Rainwater collects in many types of secondary containments installed around electrical equipment, storage tanks, chemical storage areas, and other structures. These containments are monitored for rainwater accumulation and evacuated by a vacuum truck with a 2,000-gallon tank. Rainwater also collects in the 12-foot diameter Hydrodynamic Sedimentation Unit (HSU) at the IR-6 Channel Outfall. The purpose of the HSU is to remove suspended sediments from storm water flows from the Research Yard area into the IR-6 drainage channel. Up to 8,000 gallons of clarified water is removed from the HSU at least biennially. The accumulated HSU sediment is vacuum-removed and contained separately for off-site disposal. The water is processed through a non-hazardous water treatment unit, which uses activated carbon canisters to remove organics and solids and is equipped with a 100-micron pre-filter. The water is then discharged into the reservoir of Cooling Tower 1701 for re-use in cooling operations or discharged to the sanitary sewer.

On an annual basis, the pavement in the Research Yard and/or select storm drain lines and catch basins are power-washed, and the rinse waters are clarified, and any sediment is collected. The sediment is sent off-site for disposal, and the wash water is processed through the non-hazardous water treatment unit, and reused in cooling operations, or discharged to the sanitary sewer.

Other non-hazardous water batches, such as water collected from domestic water line leaks, pipe flushing and construction activities, may be processed through the treatment unit as appropriate for re-use in the cooling tower.

Location

Secondary containments throughout SLAC, the HSU at the IR-6 Channel, Research Yard pavement, and select storm drain lines and catch basins.

Characterization

The water could potentially contain low levels of PCBs, metals, petroleum hydrocarbons, and other contaminants, so it will be processed through activated carbon canisters to remove organics and solids. Power-wash water from pavement and catch basin cleaning is also analyzed prior to treatment by activated carbon to ensure that metals do not exceed loading limits at Alpine Road. Yearly average daily discharge volume is estimated to be 1,000 gallons per day.

Point of Discharge

East side of Cooling Tower 1701, south of Research Yard. Discharge is to Alpine Road.
6 Steam Cleaning Pad and Oil-Water Separator at Motor Pool

Description

Motor pool personnel wash vehicles and equipment and steam-clean parts on an unroofed concrete pad adjacent to Building 81 (General Services Building). This facility provides centralized cleaning services for the entire range of vehicles used on-site, which includes mobile cranes, forklifts and other heavy equipment, passenger cars, and trucks.

The steam-cleaning unit uses only domestic water and soap or detergent. Its flow capacity is 3.9 gallons per minute. Steam cleaning and stormwater run-off from the steam cleaning pad flow into a below-grade sump via the central slot drain. The sump is connected to the oil-water separator (OWS).

The sewer-discharge OWS is equipped with a polishing sheen filter pack, an oil surface skimmer, and a 600-gallon polyethylene clarifier/settling tank. Run-off from the pad is pumped from the sump into the settling tank to remove particulates, then processed through the OWS, and finally discharged to the sanitary sewer. The steam cleaning pad and sumps are cleaned twice per year. The accumulated sludge is disposed of as hazardous waste.

Location

The steam cleaning pad and oil-water separator unit is located outside, adjacent to south-east corner of Building 81, immediately south of the motor-pool vehicle service bays.

Characterization

Domestic water containing mild detergent and trace amounts of oil and metals.

Point of Discharge

Treatment unit is hard-plumbed sanitary sewer connection at Building 081.
7 Low-Conductivity Water from Cooling Systems

Description

Operation of SLAC’s electron accelerator generates considerable heat, which is absorbed by low conductivity water (LCW) circulating through flanges, jackets, and pipes around the accelerator tube in closed-loop configurations. The heat is later transferred from the LCW in closed-loop systems to domestic water open-air cooling systems, and is ultimately dissipated to the atmosphere by evaporation in induced-draft cooling towers. The accelerator and its support equipment are served by numerous independent cooling systems throughout SLAC.

LCW is generated at the deionized water plant in Building 461. Domestic water is processed by an ion-exchange system that maintains the conductivity at or below 8 meg-ohms, resulting in relatively high-purity water.

SLAC has approximately 130 circulating systems, ranging in capacity from several hundred gallons to 50,000 gallons. Systems are frequently drained for maintenance and installation of new equipment. A system of average size holds approximately 2,000 gallons. Typically, a section requiring maintenance or repair can be valved off, allowing only a small part of the system to be drained.

A storage tank network is in place to contain spilled or leaking water from cooling systems in the Klystron Gallery. The network comprises 11 500-gallon plastic tanks installed along the north side of the Gallery. Each tank is sampled for radioanalysis prior to discharge.

LCW with low levels of radioactivity is collected in temporary holding tanks and subsequently transferred to the IR-8 PEP Tunnel Sump Holding Tank for delayed discharge to the sanitary sewer from 12 am to 2 am.

Location

LCW systems are located throughout SLAC.

Characterization

LCW contains very low concentrations of heavy metals; primarily copper from the piping. This discharge may contain extremely low levels of radioactivity, which are within state and federal regulations for discharge into the sanitary sewer. Each batch of potentially radioactive LCW is sampled for radioanalysis prior to discharge to ensure compliance with all applicable discharge requirements. The radioanalysis data are summarized in a quarterly self-monitoring report submitted to Silicon Valley Clean Water.
8 SLAC Cafeteria

Description

The on-site cafeteria produces wastewater associated with food preparation and dishwashing. This water passes through a grease interceptor before entering the sanitary sewer. The grease interceptor is serviced on a quarterly basis.

Location

Science User Support Building (SUSB) Cafeteria (Building 053).

Flow

Characterization

Domestic water mixed with food waste.

Point of Discharge

Sink and dishwasher drain in the SUSB Cafeteria (Building 053).
9 Construction Water

Description

During construction projects, wastewater is generated and discharged to the sanitary sewer. Some of the construction activities that generate wastewater include the following:

- Draining of domestic and fire line pipes prior to replacing or connecting into existing lines.
- Commissioning activities of heating hot water (HHW) and chilled water (CHW) system loops treated with alkaline phosphate cleaner.
- Flushing of new fire sprinkler lines and fire suppression lines following Fire Life Safety inspection.
- Flow testing of new fire lines.
- Pressure testing of new aboveground and underground piping systems.
- Cutting of Transite pipes and asbestos removal activities.

Location

Site-wide

Characterization

The characterization data show discharge of construction wastewater to be well within permit limits for oil and grease, metals and pH. For heating, ventilation, and air conditioning (HVAC) commissioning activities that involve treatment of domestic water with an alkaline phosphate cleaner, samples will be collected for oil and grease, metals, and pH analysis as appropriate, to ensure compliance with SVCW discharge specifications.

Construction wastewater may also be processed through the non-hazardous water treatment unit adjacent to CT1701, as appropriate, for re-use in the cooling tower.

Wastewater generated from Transite pipe cutting and asbestos removal activities is filtered using four in-line filter cartridges connected in series. The first cartridge in the series contains 100 micron (μm) prefilters, the second and third cartridges contain 25 μm filters, and the final cartridge contains 0.5 μm absolute filters. This filtration method has been found to remove asbestos in wastewater to non-detect, or less than the laboratory reporting limit of 2 million fibers/L (MFL).

Point of Discharge

Various
10 Pipe and Chiller flushing

Description

Chilled water is used at SLAC for various purposes, but primarily to cool research and operational equipment. SLAC has three main chillers in the Central Utility Building (B023), and a number of smaller chillers throughout the site. The chillers' copper piping system is cleaned once or twice each year, and the spent solution is discharged to the sanitary sewer. The evaporator barrel tubes are rarely cleaned, as the water treatment typically prevents any buildup of debris. The condenser barrel tubes are cleaned as necessary, typically every one to three years. Following cleaning, the process cooling water is discharged to the sanitary sewer; however, rarely is an entire system completely drained. Other piping systems at SLAC, including domestic and fire pipes, are occasionally flushed with water.

Location

Various

Characterization

Domestic water that may contain the anti-corrosives Aqua Treat, OptiShield, OptiShield II, OptiShield Plus and OptiShield II Plus. Sodium nitrite may be used to treat the closed loop systems. The characterization data show this discharge to be well within permit limits for metals and pH.

Point of Discharge

Various
11 Fire Water Testing

Description

The SLAC Fire Protection Systems Group performs semiannual sprinkler inspection and testing of approximately 160 sprinkler systems on-site. Testing involves flow through a ½-inch orifice for a period that averages about one minute. Assuming a pressure drop across the outlet of about 70 psi, the flow averages about 40 gallons per minute (gpm).

In addition, main drain tests are done following sprinkler valve closures. These tests occur much less frequently (perhaps 20 times per year) and use about 400 gpm per test for a period of about 20 seconds. A few times per year, typically for inspection purposes, fire system drain-downs are performed.

Location

Buildings throughout SLAC.

Characterization

Domestic fire water.

Point of Discharge

Hard-plumbed connections to the sanitary sewer or flow into a container, the contents of which are then released manually to sanitary sewer.
12 Boiler Flushing

Description

Hot water is used at SLAC for various purposes, but primarily to heat office spaces. Preventative maintenance is performed annually on the boilers, and the entire volume of the boiler is typically discharged to the sanitary sewer during annual maintenance. The boiler vessel is rarely cleaned, as the water treatment typically prevents any buildup of debris. During preventative maintenance, hot water is discharged to the sanitary sewer after it has cooled to below 120 degrees Fahrenheit. If it is not possible to cool the boiler water prior to discharge, it will be mixed with additional domestic water to lower the temperature during discharge. SLAC has three large boilers and one small boiler that need to be drained during preventative maintenance. SLAC has six small (less than 20 gallons) electric and gas boilers that do not need to be drained during preventative maintenance activities.

Location

Building 023 (B023):
Superior Boiler (Boiler-200): 2,446 gallons
Cleaver/Brooks Boiler (Boiler-201): 2,410 gallons

B950A:
Large Boiler (Boiler-2): 920 gallons
Small Boiler (Boiler-1): 108 gallons

There are three small (less than 20 gallons) electric boilers located at Sector 10, Sector 20, and B750. There are three small (less than 20 gallons) gas boilers located in B015 and B081.

Characterization

The hot water loop at Building 023 that feeds the main campus is treated with the anti-corrosive Corrsheid MD4100. The hot water loop at Building 950, and the small electric and gas boilers are treated with Aqua Treat B239, similar to the chilled water loops at SLAC. The characterization data show this discharge to be well within permit limits for metals and pH. Yearly average daily discharge volume is estimated to be 50 gallons per day. Discharges will exceed 50 gpd for maintenance activities that require full discharge of the boiler as described above.

Point of Discharge

Various
13 Laboratory Solutions

Description

Research laboratories at SLAC managed by the SSRL, LCLS, and Energy Sciences Directorates generate various liquid wastes with low toxicity including buffer solutions and other dilute mixtures. SSRL and LCLS non-hazardous waste solutions consist of episodic, final stage preparations in which buffers and similar non-hazardous aqueous solutions are used to stabilize sample states. Energy Sciences non-hazardous waste solutions are produced by long term experiments where buffers and similar non-hazardous aqueous solutions are used in experimental protocols. Biology research laboratories work with biosafety levels (BSL) 1 and 2 materials and generate various liquid wastes with low toxicity, including buffer solutions and culture media.

Solutions that are within SVCW permitted discharge specifications are disposed of in the sanitary sewer through laboratory sinks. Any solutions which do not meet SVCW discharge specifications are shipped off-site for disposal. SVCW discharge specifications require that a solution discharged to the sanitary sewer be non-hazardous, non-toxic to rats, rabbits, and *Onchorhynchus mykiss* (Rainbow trout), and that it has a pH in the range of 6.0-11.

In SLAC’s biology laboratories, non-hazardous waste solutions are produced by bleach-decontamination of biological agent-contaminated culture media and buffer solutions produced during culturing of cells (human cell lines, animal cell lines and primary cells) and pathogens (e.g. viruses) used in experimental protocols. Per the Stanford University Biosafety-approved protocol, the decontamination procedure involves adding a 10% bleach solution to the cell culture media containing BSL1 or BSL2 biological materials. The solution is required to sit for at least 30 minutes to completely deactivate all biohazardous agents in solution. Once contact time has passed, the material is discharged to the sanitary sewer. If the pH of the material is not within the permitted range, the material contains antibiotics, or is determined to be hazardous or toxic, it is collected and sent to SLAC’s Waste Management Department for offsite disposal.

Point of Discharge

SSRL (B120, B130, B131, B006, B040A); LCLS (B057, B750, B950, B999, FEH); CryoEM Center (B006 and B057); Bioscience (B040 and B057); and Energy Sciences Directorate/AED + SUNCAT (B040A and B057).

Characterization

Solutions contain low levels of inorganic salts, buffer solutions, supplemental proteins and vitamins, and other dilute chemicals, as well as the decontamination solution for biological solutions (10% bleach/90% water). This is a Center for Disease Control (CDC)-approved protocol that destroys biological agents contaminating those solutions prior to discharge. Typical SSRL and LCLS discharge wastes are solutions that contain multiple non-hazardous components, where any one component does not exceed a concentration of 1000 millimolar. For typical solutions in any participating laboratory, total components are approximately 3% to 10%
of total solution by weight. Yearly average daily discharge volume is estimated to be 50 gallons per day.

Verification

Routine spot checks are performed by the Laboratory Manager and Environmental Safety and Health (ESH) Coordinator to ensure discharges are performed in accordance with agreed procedures and per orientation requirements provided to all personnel working in the space. Additionally, an online sink disposal log is used to track those materials approved for discharge through the sink, including the date range of the experiment, the lab room, and the responsible person.
14 Building 006 Clean Room

Description

The Building 006 clean room utilizes domestic water from an ultra-pure water filtration system mixed with a mild detergent to clean dust from metal parts. Wash water and backwash from the ultra-pure water filtration system are discharged to the sewer.

Location

The clean room is located in Building 006.

Characterization

The wastewater contains 1-part mild detergent to 15 parts water and any dust washed from the parts. Parts washed in this clean room do not have oil, grease or other contaminants. Backwash water from the ultra-pure water filtration system contains low concentrations of minerals found in domestic water.

Discharge Location

The water is plumbed to the sanitary sewer system in Building 006.
15 Emergency Eyewash and Shower Testing/Inspection

Description

SLAC has many plumbed eyewash stations and safety showers. Plumbed eyewashes are flushed weekly to minimize the accumulation of sediment and other obstructions. Safety showers are flushed monthly. Eyewashes and showers are flushed until the water runs clear, which is typically attained in about one minute. The eyewash stations are capable of delivering no less than 0.4 gallons of water per minute for fifteen minutes. The safety showers are capable of delivering 20 gallons of water per minute for 15 minutes.

Location

Site-wide

Characterization

Domestic water.

Point of Discharge

Hard-plumbed connections to the sanitary sewer.
16 Building 015 All-in-One Washer/Dryer, Dishwasher, and Ultrasonic Cleaner

Description

The Building 015 all-in-one washer/dryer uses approximately 15 gallons of domestic water to clean power supply air filters, approximately once per month. The Building 015 dishwasher uses approximately four gallons of domestic water to clean electronic components, approximately once every two weeks. The Building 015 ultrasonic cleaner uses approximately two gallons of domestic water to clean power supply circuit boards, approximately once per week. This work is performed by the Electronics Engineering Department, Accelerator Power Systems (EED-APS) as preventative maintenance of the electronic components. Wastewater from the all-in-one washer/dryer, dishwasher, and ultrasonic cleaner is discharged to the sanitary sewer.

Location

All-in-One Washer/Dryer - Building 015 south high bay area
Dishwasher - Building 015 south high bay area
Ultrasonic Cleaner – Building 015 Cage 123

Characterization

The wastewater from the all-in-one washer/dryer, dishwasher, and ultrasonic cleaner may contain dirt and low levels of metals.

Discharge Location

The water is plumbed to the sanitary sewer system in Building 015.
17 Low-Conductivity Water from Klystron Tubes

Description
Klystron tube assemblies are routinely modified and repaired. Approximately three gallons of low-conductivity water (LCW) circulates in each klystron final assembly in a closed-loop re-circulating system. Upon disassembly of a klystron final assembly, the LCW is drained into the sanitary sewer. Approximately one klystron final assembly per day is disassembled and drained.

Location
Building 44 (Test Lab).

Characterization
Non-radioactive, uncontaminated LCW.

Point of Discharge
Sanitary sewer in Building 44.
18 Test Stand Cooling Water

Description
Fully dressed klystron and other research and development units are operationally tested after assembly before being put into or returned to service. Low-conductivity water (LCW) is circulated through each unit under pressure in a closed-loop cooling system. When the cooling system is not in use, some LCW is drained in order to relieve pressure on the gauging system.

Location
Building 44 (Test Lab).

Characterization
Non-radioactive, uncontaminated LCW

Point of Discharge
Hard-plumbed connection to sanitary sewer in central western area inside Building 44
19 Water from Wet-Blasting Operations

Description

Radio-frequency (RF) windows in klystrons are made by brazing aluminum oxide (Al₂O₃) to copper ring in a stainless-steel housing. The RF windows are cleaned periodically in a wet-blower, using a mixture of domestic water and Al₂O₃. The wet-blower contains approximately 50 gallons of domestic water in a semi-closed, re-circulating system. The water reservoir must be drained and replaced every one to two months, depending on usage. The drained water is discharged to the sanitary sewer.

In addition, every three to six months both the domestic water and the Al₂O₃ are drained, and the blaster itself is cleaned. The Al₂O₃ is allowed to settle out of the water and is disposed of as hazardous waste after the water is decanted from the bucket. Settling is performed after each use, as well. The water is discharged to the sanitary sewer.

Location

Building 123

Characterization

Domestic water with traces of Al₂O₃, copper and stainless steel.

Point of Discharge

Sink in Building 123
20 Monitoring Well Purge Water

Description

Prior to collecting a groundwater sample from a monitoring well, any standing water in the well must be removed. This process is called “purging”, and is performed to ensure that the sample taken is truly representative of the body of water surrounding the screened interval of the well.

Purge water from each well has been thoroughly characterized by repeated sampling and analysis by a state-certified laboratory. The results have shown the water to be in compliance with the conditions of this discharge permit. Purge water from these wells is pumped into drums or tanks and discharged directly to the sanitary sewer.

* Note Purge water from any well having more than 2 parts per million (ppm) of total volatile organic compounds (VOCs), based on prior characterization and monitoring, is collected in drums and managed as hazardous waste by SLAC Waste Management.

Location

Purge water is generated from a network of operational groundwater monitoring wells located throughout the SLAC facility.

Characterization

Groundwater contains elevated concentrations of sulfates, total dissolved solids, and calcium hardness. Groundwater may also contain less than 2 ppm of total VOCs, based on prior characterization and monitoring. Purge water is evaluated for potential radioactivity and sampled as appropriate prior to discharge. The radioanalysis data are summarized in a quarterly self-monitoring report submitted to Silicon Valley Clean Water.

Point of Discharge

Building 015 casting pad sewer cleanout (manhole 85A) and the IR-8 PEP Tunnel Sump Holding Tank.
21 Detector Microfabrication Facility

Description

The Detector Microfabrication Facility (DMF) is a new Stanford University cleanroom and laboratory geared toward fabrication of state-of-the-art superconducting quantum devices and sensors. The DMF lab will be a 5,500-square-foot, class-100 cleanroom in the Arrillaga Science Center (B057) and will have six bays and eight chases. The lab will begin operations in October 2022; with full-scale operation anticipated by summer 2024. The lab will have the following tools:

- Lithography: stepper, coating track, developing track, laser direct write tool
- 3 acid wet benches: wafer cleaning with hydrofluoric acid, aluminum etchant, lithography developer bath
- 4 solvent wet benches: photoresist removal with acetone and isopropanol baths; liftoff with acetone and remover PG; detector releasing with isopropanol, acetone and Remover PG; and photoresists coating bench with SPR660, SPR220-3, SPR 220-7, LOR, HMDS and EBR-PG.
- 2 quick dump rinsers (QDR) from two acid benches
- 6 spin/rinse/dryers (SRD)
- 6 deposition tools
- 4 etching tools
- A suite of metrology tools
- 1 to 3 PECVD wet scrubbers

Up to 3,000 gallons per day of non-hazardous process wastewater will be treated by an acid waste neutralization system prior to discharge. An ultrapure water reverse osmosis system will discharge up to 8,000 gallons per day.

Point of Discharge

Arrillaga Science Center (B057).

Characterization

Non-hazardous solutions containing solvent and acid residues, residual acetone and isopropanol, metals, and other dilute chemicals treated through an acid waste neutralization system prior to discharge. Reverse osmosis reject water with total dissolved solids concentration of below 400 milligrams per liter.
Industrial Wastewater: Discharge Characterization Guidelines

Department: Environmental Protection
Program: Industrial Wastewater
Owner: Program Manager, Darrin Gambelin
Authority: ES&H Manual, Chapter 43, Industrial Wastewater

SLAC operations result in a wide variety of wastewater discharges, most of which are already listed in existing permits and so are considered routine. Non-routine discharges – that is, wastewater that is not yet listed on an existing permit – require additional evaluation and permitting. Routine, non-routine, and prohibited discharges are described below.

Note The industrial wastewater (IW) program manager is the point of contact for all permit applications and for (non-radioactive) wastewater characterization. Any wastewater containing radioactive constituents must be reported to both the IW program manager and the Radiation Protection Department (RP).

Permitted Routine Discharges

There are approximately 20 types of routine discharges listed in SLAC’s wastewater discharge permits. These include discharges from cooling systems, radiologically controlled areas, groundwater treatment systems, the cafeteria, the metal finishing pretreatment facility (MFPF), and grinding operations. For a complete list and permit details, see Industrial Wastewater: Permitted and Prohibited Discharge Reference.¹

Note Permit compliance requires that wastewater contain no hazardous constituent and that constituents of concern listed in the permit be below a specified limit.

Non-routine Discharges

Wastewater that is not included in current permits must be characterized in coordination with the IW program manager to determine if it falls within permit conditions, and if so, which type of permit is required. Depending on the evaluation results, the wastewater could be

- Discharged after it is added to SLAC’s mandatory wastewater discharge permit
- Discharged after a non-routine discharge permit is issued
- Disposed of by the Waste Management Group (WM) if the wastewater contains prohibited constituents

SLAC must receive specific authorization from the South Bayside System Authority (SBSA) and the West Bay Sanitary District (WBSD) prior to any non-routine discharge.

Examples of Wastewater Not Included in Permits

Modified Processes Affecting Discharge

Any change in operation that affects the characterization of a listed discharge as routine must be reported to the IW program manager because process modification may change wastewater constituents, strength, volume, or the discharge period. The program manager can assist in characterizing the new wastewater and notifying the SBSA and WBSD.

New Processes

Discharges resulting from a new process or activities must be characterized and added to the mandatory permit if the process or activity will be ongoing. If a new discharge results in a single discharge, it is best handled by applying for a non-routine permit.

Prohibited Discharges

SLAC’s permits stipulate that no discharge may enter the sanitary sewer that may cause

- Danger to human life or safety
- Fire or explosion
- Discharge of hazardous waste to the sanitary sewer
- Odors, air pollution, or any noxious, toxic, or malodorous gas or substance, or gas-producing substances
- Flow obstruction or injury to the sewerage facilities
- Interference or overloading of the wastewater treatment or reclamation process, or sewerage facilities, or excessive costs, or use of a disproportionate share of the capacity of the sewerage facilities
- A detrimental environmental impact or nuisance (for example, any discharge with detectable concentrations of polychlorinated biphenyls)
- Dilution of a discharge of waste or wastewater as a substitute for adequate treatment
- Inhibition of maintenance or operation of the sewerage facilities
- Any adverse action that impacts the ability of the sewage treatment plant to protect the San Francisco Bay

Any spills or accidental discharges to the sanitary sewer system that violate the permit conditions must be reported to the IW program manager immediately so that the appropriate regulatory agencies can be notified. The following are examples of spill types that must be reported.

Non-hazardous Wastes

- A non-routine discharge due to a pipe break or similar event
- Any release with a pH less than six or greater than 12.5
- Any spill that may contain radioactivity (also report this to RP)
- Any treatment process upset that may allow a discharge outside of the permit conditions (such as high or low pH, discharge prior to treatment, equipment failure or operator error)
Industrial Wastewater: Discharge Characterization Guidelines

Hazardous Material or Waste

- Any release of fuel or oil
- Any release of chemicals or hazardous waste

Note For more information on how to handle accidental discharges and spills, see Chapter 16, “Spills”.

1 Feb 2007 (updated 1 Feb 2007) SLAC-I-750-0A16T-007-R000 3 of 3
Industrial Wastewater: Wastewater Sampling Requirements

Department: Environmental Protection
Program: Industrial Wastewater
Owner: Program Manager, Darrin Gambelin
Authority: ES&H Manual, Chapter 43, Industrial Wastewater

SLAC’s certification that it is within permit limits is contingent on periodic wastewater sampling and analysis by specified entities. Certification eligibility must be demonstrated quarterly for certain permits. Sampling is carried out by the South Bayside System Authority (SBSA), the Mechanical Fabrication Department (MFD), and the Environmental Protection (EP) Department.

Note Samples with potential radiological analytes must be submitted to the Radiation Protection Department (RP) for analysis.

Sampling by SBSA

As part of SLAC’s mandatory wastewater discharge permit, the SBSA collects quarterly composite and grab samples of SLAC’s discharge to the sanitary sewer. Samples are analyzed for a variety of constituents including metals and selected VOCs.

The SBSA also conducts routine annual monitoring of the metal finishing pretreatment facility (MFPF) effluent. A composite sample is collected over a continuous 24-hour period using an autosampler. The composite sample is collect at the barbed fitting downstream from the confluence of the two clarifiers. Additional grab samples are also taken. All samples collected by the SBSA are split with SLAC on request and analyzed for heavy metals, total cyanide, and pH.

Sampling by MFD

To assess compliance with discharge requirements, the MFD collects wastewater samples periodically while the MFPF is in operation to analyze (in-house) for pH, copper, and chromium. Sampling typically occurs twice a day, but the actual frequency depends on the quantity of waste being treated. Analytical results are retained by MFD for at least 3 years.

Samples are collected at the MFPF semi-annually and analyzed for pH, cyanide, and the metals cadmium, chromium, copper, lead, nickel, silver and zinc. The sampling event consists of collecting a composite of four grab samples over two working days during working hours.

Sampling by EP

Discharge permit requirements for the treatment systems installed at the former solvent underground storage tank (FSUST) and the former hazardous waste storage area (FHWSA) are described below.
FSUST Groundwater Treatment System Sampling Requirements

- Frequency: quarterly
- Sample location: influent, mid-stream and effluent process water
- Required analyses: Gasoline and VOCs
- Additional analyses: SLAC also analyzes for semi-VOCs and 1,4 dioxane

FHWSA Process Water Sampling Requirements

- Frequency: quarterly
- Sample location: air stripper effluent process water
- Required analyses: TPH-gasoline, VOCs, and specific metals (As, Cd, Cr, Cu, Pb, Ni, Ag, Zn and Hg).
- Additional analysis: SLAC also analyzes for 1,4 dioxane

For each of these areas, concentrations of detected constituents are multiplied by the average daily volume of water discharged in order to determine the total amount of constituent discharged by SLAC. This quantity is used to determine if SLAC is within the discharge limits defined in the discharge permit.

Radiological Sampling Requirements

Radioanalysis of wastewater with known or suspected radiological analytes is performed prior to discharge to the sanitary sewer. The concentration of each release is multiplied by the volume of the release to ensure that SLAC is within the permit’s annual discharge limits.

Note Sample collection and delivery to RP are the responsibility of the group generating the wastewater.
Industrial Wastewater: Wet or Chemical Labs Best Management Practices

Department: Environmental Protection
Program: Industrial Wastewater
Owner: Program Manager, Darrin Gambelin
Authority: ES&H Manual, Chapter 43, Industrial Wastewater

Industrial wastewater best management practices (BMPs) are guidelines that minimize the impact of activities that potentially contribute contaminants to the sanitary sewer. Most of these guidelines reflect practices already implemented at SLAC as prudent practices or as ES&H requirements.

The following BMPs apply to wet or chemical laboratories and are intended to protect water quality.

Drain Protection
- Seal floor drains where chemicals are used or stored. Provide a floor drain stopper if the drain cannot be sealed.
- Protect the lab’s safety shower drain with a temporary plug or covered sump.

Chemical Storage
These BMPs apply to chemical storage. For additional detailed information on how to properly store hazardous materials, see Chapter 40, “Hazardous Materials”.

- Store chemicals on low shelves or under countertops, on textured rubber mats whenever possible.
- Store chemicals behind protective barriers at least 1/5 the height of the tallest container.
- Never store chemicals above a sink.
- Keep flammable chemicals in an approved fire-proof cabinet.
- Do not leave chemical cabinet doors unlatched.
- Never store incompatible chemicals together. Avoid accidental mixing.

Chemical Disposal
These BMPs apply to chemical disposal. For detailed information on how to properly dispose of hazardous materials, see Chapter 17, “Hazardous Waste”.

- Collect and segregate hazardous waste for proper disposal
- Use signage and training to inform employees that hazardous material or hazardous waste is never discharged directly to the sewer. Signs above sinks have been effective.

If you are not certain if a material is permitted to be poured down a drain, ask your environmental and safety coordinator or contact the industrial wastewater program manager.

Dispose of mop water appropriately. If you expect a hazardous component based on operational knowledge, contact the Environmental Protection Department for characterization. If the mop water contains hazardous components, contact the Waste Management Group (WM) for proper disposal.

Secondary Containment

- Provide secondary containment for all hazardous chemicals and hazardous waste, including countertop flasks and squirt bottles.
- Keep secondary containment clean and dry.
- Never use a sink as secondary containment.

Spill Control

These BMPs apply to spill control. For additional information on how to handle spills, see Chapter 16, “Spills”.

- Clean up spills whenever they occur.
- Keep a well stocked, accessible spill kit in the area. Make sure you have spill-control supplies for the type of materials you use and store.
- Ensure that employees are trained in SLAC emergency response procedures in the event of an accidental discharge or spill.

Industrial Wastewater: Machine, Maintenance, and Craft Shop Best Management Practices

Department: Environmental Protection
Program: Industrial Wastewater
Owner: Program Manager, Darrin Gambelin
Authority: ES&H Manual, Chapter 43, Industrial Wastewater

Industrial wastewater best management practices (BMPs) are guidelines that minimize the impact of activities that potentially contribute contaminants to the sanitary sewer. Most of these guidelines reflect practices already implemented at SLAC as prudent practices or as ES&H requirements.

The following BMPs apply to machine, maintenance, and craft shops and are intended to protect water quality.

1. Ensure that employees are aware of emergency response procedures in the event of an accidental discharge or spill. For additional information on how to handle spills, see Chapter 16, “Spills”.¹
2. Use signage and training to inform employees that hazardous material is never discharged directly to the sewer. Signs above sinks have been effective.
3. Keep machines and equipment maintained to minimize leaks.
4. Locate machines, equipment, and hazardous materials away from floor drains when possible.
5. Seal floor drains located near machines, processes and hazardous materials storage areas. Provide a floor drain stopper if it cannot be sealed.
6. Use drip pans to collect oil and spills from machines and equipment.
7. Use absorbent socks or pigs around leaky equipment.
8. Have kitty litter or absorbent pads on hand to clean up leaks as they occur.
9. Provide secondary containment for hazardous material, hazardous waste, or machines with significant quantities of internal fluid (oil or coolant) if they pose a release threat. For additional information on secondary containment, see Chapter 40, “Hazardous Materials”.²
10. If possible, drain oil-filled equipment before moving.
11. Conduct activities inside if possible. If conducted outside follow all applicable storm water pollution prevention BMPs. See Chapter 26, “Stormwater”.
12. Remove debris and sweep the shop floor often.
13. Dispose of mop water appropriately. If you expect a hazardous component based on operational knowledge, contact the Environmental Protection Department for characterization. If the mop water contains hazardous components, contact the Waste Management Group (WM) for proper disposal.

Industrial Wastewater: Cafeteria Best Management Practices

Department: Environmental Protection
Program: Industrial Wastewater
Owner: Program Manager, Darrin Gambelin
Authority: ES&H Manual, Chapter 43, Industrial Wastewater

Industrial wastewater best management practices (BMPs) are guidelines to minimize the impact of activities that potentially contribute contaminants to the sanitary sewer. Most of these guidelines reflect practices already implemented at SLAC as prudent practices or as ES&H requirements.

The following BMPs apply to the cafeteria and are intended to ensure that cafeteria wastewater is in compliance with SLAC’s wastewater discharge permits.

Discharges of food, oil, and grease are restricted.

- Garbage grinders must have the capacity to shred waste so that waste particles are carried freely into and through the sewerage facilities under normal flow conditions.
- Food-preparation sinks and dishwashers must be plumbed to grease traps that are inspected and pumped on a regular basis.
Industrial Wastewater: Treatment of Pipe Flushing Water
Best Management Practices

Department: Environmental Protection
Program: Industrial Wastewater
Owner: Program Manager, Darrin Gambelin
Authority: ES&H Manual, Chapter 43, Industrial Wastewater

Industrial wastewater best management practices (BMPs) are guidelines that minimize the impact of activities that potentially contribute contaminants to the sanitary sewer. Most of these guidelines reflect practices already implemented at SLAC as prudent practices or as ES&H requirements.

The following BMP applies to pipe flushing of all metal pipes.

- Water generated from the flushing of metal pipes may contain elevated levels of metals such as copper. When possible, water from pipe flushing of metal pipes should be treated at the Metal Finishing Pretreatment Facility (MFPF) to reduce the metal concentrations before release to the sanitary sewer.

These are the steps for requesting MFPF treatment:

1. The department performing the flushing will contact the MFPF to determine if and when MFPF can accept and treat the water.
2. The department performing the flushing will make arrangements to containerize the pipe flushing water in drums or tanks and transport these containers to the MFPF. Drums or small tanks may be obtained from the Waste Management Group.
3. MFPF will treat the water to remove metals before discharge to the sanitary sewer.