Heavy Flavour Identification at Linear Colliders

Joel Goldstein
University of Bristol
LCFI Collaboration

SLAC AIS 9/3/08
Linear Collider Flavour Identification

- Has been focusing on ILC

- Bristol
- Edinburgh
- Glasgow
- Liverpool
- Nijmegen
- Oxford
- RAL
Flavour Physics

- Precision detectors close to interaction point
- Distinguish tracks from secondary vertices
 - Identify, separate b, c quarks and τ leptons
 - Measure charge
Flavour Tagging

- b-tagging fairly robust at the ILC
- c-tagging more detector dependent
 - Measure Higgs branching ratios
 - ...

![Diagram 1](image1.png)

- $ee \rightarrow Z \rightarrow qq$ @ 91 GeV
- Full Monte Carlo - LDC01_05Sc
- Full reconstruction

![Diagram 2](image2.png)

- Coupling constant to Higgs Boson, g_x
- Typical precisions at ILC
- H^+, W, Z
Vertex Charge

- Add charge of all tracks in vertex
- Identify charge of flavoured hadron
 - Can distinguish quark/antiquark
 - Measure hadronic asymmetries
 - Anomalous couplings, LEDs...

Forward – Backward Asymmetry of reconstructed bbar

- Sensitive to detector parameters
 - Acceptance
 - Material
 - Geometry...
ILC Vertex Detector

- 800M 20×20µm² pixels
- 5 layers, inner radius ~ 1.5 cm
- Gas cooling
 - 0.1% X_0 per layer in active region
 - Uniform material distribution
Mechanics

Material target equivalent to 100 μm silicon

- Thinning silicon to 50-100 μm becoming routine
- Thinning to epitaxial possible

- Ladders with bulkheads
 1. Unsupported silicon
 - can’t control lateral curl
 2. Laterally stiffened silicon
 3. Rigid structures
Thin Substrates

- Longitudinal stiffness from tensioning
- Lateral stiffness from thin substrate
 - Beryllium: good specific stiffness but bad CTE
 - Carbon fibre good candidate
 - 0.09% X_0 test model
 - laterally stability insufficient

profile of silicon along the length of a ladder

Deviation in z (um)

- SI on CF (at 20 deg C)
- SI on CF (at -50 deg C)
- SI on Steel (at 20 deg C)
- SI on Steel (at -50 deg C)
Foam Ladders

- 25 micron silicon on 1.5mm 8% SiC
 - Very rigid
 - Achieved 0.14% X_0

- 20 micron silicon sandwiching 1.5mm 2% carbon
 - Could be double-sided
 - Achieved 0.07% X_0

More exotic rigid structures possible
RVC Foam

- Reticulated Vitreous Carbon
 - 2-3% relative density
 - Not stiff enough for one-sided
RVC Results

- Shape due to fabrication technique
 - New fixtures look promising
 - Difficult to control behaviour
SiC Foam Ladder

- Processed 8% SiC Foam
 - A fraction of initial shape left
 - 30% over material budget
 - Now have 3-4% foams
- Minimally constrained
 - Eliminate stiction in mountings

Negligible deformation over 70 degrees!
Foam Future

- SiC seems extremely promising
 - Lower density now in hand
 - Learning how to process
Foam Future

- SiC seems extremely promising
 - Lower density now in hand
 - Learning how to process
 - All-SiC foam structure...?
Foam Future

• SiC seems extremely promising
 ▸ Lower density now in hand
 ▸ Learning how to process
 ▸ All-SiC foam structure...?
The ILC Challenge

ILC bunch structure:
The ILC Challenge

ILC bunch structure:

- Once per bunch = 300ns per frame: too fast
The ILC Challenge

ILC bunch structure:

- Once per bunch = 300ns per frame: *too fast*
- Once per train ~200 hits/mm²: *too slow*
The ILC Challenge

ILC bunch structure:

- Once per bunch = 300ns per frame: too fast
- Once per train ~200 hits/mm^2: too slow
- 10 hits/mm^2 => 50µs per frame: just right
The ILC Challenge

ILC bunch structure:

- Once per bunch = 300ns per frame: too fast
- Once per train ~200 hits/mm2: too slow
- 10 hits/mm2 => 50µs per frame: just right
- 1.6 MPixels in 50µs (commercial ~ 1ms)
The ILC Challenge

ILC bunch structure:

- Once per bunch = 300ns per frame: too fast
- Once per train ~200 hits/mm²: too slow
- 10 hits/mm² => 50µs per frame: just right
- 1.6 MPixels in 50µs (commercial ~ 1ms)
- And gas cooled!
Sensor R&D

- **Column Parallel CCDs**
 - Focus so far - building on past experience
 - Readout during bunch train

- **Image Sensor with In-situ Storage**
 - Increased robustness
 - Reduced driver requirements
CP CCDs

- Separate readout for each column
- 50 MHz clock rate
- Clock drive is real challenge

Column Parallel CCD
Readout time = (N+1)/F_{out}
• RAL-designed ASIC
 ▸ Bump-bonded on 20µm pitch
 ▸ Latest has cluster finding
High Speed CPCCDs

- Two metal layers
- Distributed clocks
 - Faster
 - More uniform
- Old and new ASICs
CPC-2

- 1, 4, 10 cm long variants
- Custom clock driver ASIC
- Tested up to 45 MHz

Noise $\sim 75e^-$
• Store charge in CCD register within each pixel
• Orders of magnitude increased resistance to RF
• Much reduced clocking requirements \((\text{readout} \sim 1 \text{MHz})\)
• Combination of CCD and CMOS technology on small pitch
ISIS-1

- Proof-of-principle in CCD process
 - 16×16 array
 - 5 time samples
isis-1 Tests

- Tested with ^{55}Fe and 6 GeV e^{-}
- X-rays and MIPS clearly seen
- Position resolution $\sim 12\mu$m
ISIS-1 at CERN

- Testing in CERN 120 GeV pion beam
• Custom CMOS process
• 800µm² pixels
• 20 time samples
 ‣ Close to targets
 ‣ Wafers being diced
Summary

- Complete ILC vertex detector package
- Good progress in
 - Software and physics studies
 - Mechanics
 - Sensors
- Applicability beyond ILC
 - Continue much as generic R&D