Capturing single-shot images on the nanoscale at LCLS will require techniques that are compatible with coherent, ultrafast, high-intensity x-ray pulses. Fourier transform holography (FTH) is one such technique. The key to realizing FTH at soft X-ray wavelengths is the integration of a nanoscale transmission mask with the sample. The mask, which defines the holographic object and reference beams, is fabricated by focused ion beam milling. Building upon these single-shot compatible principles, we have developed methods to extend the field of view, increase the signal-to-noise ratio, and a scheme for pump-probe imaging. First proof-of-principle experiments have been performed on 3rd generation storage ring sources.