SLAC Worker Safety and Health Program
March 2017

Prepared for the

U.S. Department of Energy

SLAC National Accelerator Laboratory
Plan updates are to be communicated and/or distributed to the following, where relevant:

- SLAC Site Office (DOE)
- SLAC Director’s Office
- ESH Director

<table>
<thead>
<tr>
<th>Rev #</th>
<th>Date</th>
<th>Author(s)</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2/26/2007</td>
<td>B. Sherin</td>
<td>Initial publication</td>
</tr>
<tr>
<td>0.1</td>
<td>5/21/2007</td>
<td>B. Sherin</td>
<td>Minor modifications reflecting status on date of SSO signing</td>
</tr>
<tr>
<td>0.2</td>
<td>7/13/2007</td>
<td>B. Sherin</td>
<td>Corrected Safety Service Desk phone number on Page 22 from 4544 to 4554</td>
</tr>
<tr>
<td>1</td>
<td>10/05/2008</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision (deleted)</td>
</tr>
<tr>
<td>2</td>
<td>5/15/2009</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision (deleted)</td>
</tr>
<tr>
<td>3</td>
<td>5/07/2010</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision (deleted)</td>
</tr>
<tr>
<td>4</td>
<td>5/18/2011</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision (deleted)</td>
</tr>
<tr>
<td>5</td>
<td>5/29/2012</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision</td>
</tr>
<tr>
<td>6</td>
<td>5/21/2013</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision</td>
</tr>
<tr>
<td>7</td>
<td>5/30/2014</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision</td>
</tr>
<tr>
<td>8</td>
<td>5/25/2015</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision</td>
</tr>
<tr>
<td>9</td>
<td>5/25/2016</td>
<td>M. McDaniel</td>
<td>See table below for list of significant document changes in this revision</td>
</tr>
<tr>
<td>10</td>
<td>03/30/2017</td>
<td>M. McDaniel</td>
<td>Revised to conform to DOE Contract DE-AC02-76SF00515, 10/01/2012 - 09/30/2017 revised 3/01/2017. See table below for list of significant document changes in this revision</td>
</tr>
</tbody>
</table>
Record of Revisions in Revision 10

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 10 | March 2017 | • Revised document dates related to this revision.
 | | • Minor revision to Section 1.1, “Laboratory Mission”, with input from SLAC Communications
 | | • Revised Section 1.6, “Flowdown of 851 Requirements to Subcontractors”, to add information on the SLAC ESH Division pre-qualification of all prime subcontractors performing construction or high-risk service work.
 | | • Revised Section 5.6, “Worker Concerns”, to remove reference to DOE Order 442.1A since no longer in SLAC Contract. Also added link to Stanford Office of Audit, Compliance, Risk and Privacy.
 | | • Revised Section 7.5, “Evaluating Operations, Procedures, and Facilities”, to add annual laser safety inspections of Class 3B and Class 4 laser labs to list of regularly schedules hazard identification activities.
 | | • Revised Section 7.7, “Reviewing Safety and Health Experience”, by updating name of Issues and Improvements Program.
 | | • Revised Section 8.3, “Purchasing Equipment, Products, and Services”, to remove reference to HAAS and also updated description of Pressure Systems review to align with current procedure.
 | | • Revised Section 12.2, “Fire Protection”, revised to state that SLAC follows the SCP based on the CRD of DOE Order 420.1C.
 | | • Revised Section 12.4, “Pressure Safety”, to align with current program mechanisms.
 | | • Section 12.9, “Motor Vehicle Safety”, to describe how vehicle safety training has been incorporated into both the ESH Orientation and Construction Safety Orientation.
 | | • Revised Section 12.11, “Nanotechnology Safety”, to delete redundant DOE Policy 456.1. Nanotechnology Safety to align the risk definition there with that in the SLAC Nanomaterial Safety Plan which references the AIHA’s “A Strategy for Assessing and Managing Occupational Exposures”.
 | | • Revised Section 13, “Variances, Code of Record, and Equivalencies”, to change reference and hyperlink from SODA to SEDA.
 | | • Revised Section 14, “Enforcement”, to update status of open NTS 2015-0001 corrective actions and also updated status of revised NTS procedure document.
 | | • Made minor editorial and other revisions throughout the document. |
Approval

This Worker Safety and Health Program, required under 10 CFR 851, has been reviewed and approved by:

<table>
<thead>
<tr>
<th>Signature on file</th>
<th>Date</th>
<th>Signature on file</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Golan</td>
<td>4/10/2017</td>
<td>Dr. Chi Chang Kao</td>
<td>4/5/2017</td>
</tr>
<tr>
<td>Manager</td>
<td></td>
<td>Laboratory Director</td>
<td></td>
</tr>
<tr>
<td>DOE-SC SLAC Site Office</td>
<td></td>
<td>SLAC National Accelerator Laboratory</td>
<td></td>
</tr>
</tbody>
</table>
Office of Science (SC) Guidance for the Department of Energy Rule 10 CFR 851 - Worker Safety and Health Programs; Standard Review Plan

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Page</td>
<td>✓</td>
</tr>
<tr>
<td>Executive Summary (brief summary of work activities, locations, number of personnel)</td>
<td>✓</td>
</tr>
<tr>
<td>Principal Programs (Integrated Safety Management System Description Document, Work Smart Standards addressing DOE ISMS requirements including incorporation of 10 CFR 851 criteria into these programs)</td>
<td>✓</td>
</tr>
<tr>
<td>Summary discussion of contractor implementation processes (e.g. flowdown of requirements and coordination with other contractors, subcontractors, and sub-tier contractors and their programs and procedures) used to address criteria contained in subparts §851.10-§851.27</td>
<td>✓</td>
</tr>
</tbody>
</table>

Attachments

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CFR 851 Implementation Matrix (Crosswalk Matrix), documenting review of Rule criteria (e.g. Regulatory Citations, Applicability Determination; and Implementing Mechanisms (e.g. referenced to plans, procedures))</td>
<td>✓</td>
</tr>
<tr>
<td>For off-site work locations, describe whether DOE or OSHA has jurisdiction and which DOE SLAC Site Office is responsible for the Worker Safety and Health (WSH) Program</td>
<td>✓</td>
</tr>
<tr>
<td>Other safety and health standards as required by §851.23(b) and discussed in the Contract, Section H.5.2, “Health and Safety Program”</td>
<td>✓</td>
</tr>
<tr>
<td>List of Closure Facility hazards and controls</td>
<td>✓</td>
</tr>
<tr>
<td>Equivalencies granted prior to promulgation of the Rule in accordance with the equivalency provisions of the Codes or Standards</td>
<td>✓</td>
</tr>
</tbody>
</table>

Gap Analysis:

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CFR 851 Section Number</td>
<td>✓</td>
</tr>
<tr>
<td>The nature of the gap between 10 CFR 851 vs. current contractor policy/procedure</td>
<td>✓</td>
</tr>
<tr>
<td>An explanation of why this is a gap</td>
<td>✓</td>
</tr>
<tr>
<td>Organizations impacted by the gap</td>
<td>✓</td>
</tr>
<tr>
<td>Potential impact on cost/schedule</td>
<td>✓</td>
</tr>
<tr>
<td>Proposed resolution</td>
<td>✓</td>
</tr>
<tr>
<td>Cost/schedule impact of proposed resolution</td>
<td>✓</td>
</tr>
</tbody>
</table>
Executive Summary

Title 10 of the Code of Federal Regulations, Part 851, “Worker Safety and Health Program” (10 CFR 851), requires all Department of Energy (DOE) sites to establish a worker protection program that will reduce or prevent the potential for injuries, illnesses, and accidental losses by providing workers with a safe and healthful workplace. This document describes the Worker Safety and Health Program (WSHP) that has been developed at the SLAC National Accelerator Laboratory (SLAC) to comply with both 10 CFR 851 and DOE Contract DE-AC02-76SF00515, 10/01/2012 – 09/30/2017 revised 8/29/2016. Throughout this document, the SLAC Worker Safety and Health Program is referred to as either “the WSHP” or “the Program”, 10 CFR 851 as “the Rule” and DOE Contract DE-AC02-76SF00515, 10/01/2012 – 09/30/2017 revised 8/29/2016 as “the Contract”.

SLAC has approximately 1,500 employees. In addition, during the course of a year in excess of 850 subcontractors work at the Laboratory, and SLAC hosts approximately 3,000 visiting scientists from universities, laboratories, and industrial concerns from the U.S. and foreign countries.

The Rule, sections of the Contract and the WSHP apply to non-radiological safety and health issues in the design, construction, operation, maintenance, decontamination and decommissioning, research and development, and restoration activities at SLAC’s facilities.

The WSHP does not address radiological hazards associated with DOE activities, as these issues are outside of the scope of the Rule and are covered under DOE directives and standards, external regulatory requirements and specific sections of “the Contract”. SLAC meets the requirements of the Rule and the Contract through the implementation of this WSHP, which integrates the safety and health regulations and standards required by the Rule, the SLAC Integrated Safety and Environmental Management System (ISEMS), and other components of the SLAC ESH Program. The Program is in turn implemented by SLAC documents that interface with workers, such as applicable sections of SLAC’s ESH Manual and other policies, procedures, and programs (accessible through SLAC’s ESH website). The documents that are cited in this document are hereby incorporated by reference. Citations to specific sections of the ESH Manual refer to the most current version of these documents as of the date of publication of SLAC’s WSHP.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td></td>
<td>VII</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>VIII</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>LABORATORY MISSION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>LOCATIONS</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>WORKFORCE</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>PURPOSE</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>SCOPE</td>
<td>2</td>
</tr>
<tr>
<td>1.6</td>
<td>FLOWDOWN OF 851 REQUIREMENTS TO SUBCONTRACTORS</td>
<td>2</td>
</tr>
<tr>
<td>1.7</td>
<td>EXCLUSIONS</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>COMPLIANCE</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>SLAC ESH PROGRAM</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>INTEGRATED SAFETY MANAGEMENT SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>ENFORCEMENT PROCESS</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>IMPLEMENTATION</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>MANAGEMENT RESPONSIBILITIES</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>SAFETY POLICY, ISEMS PRINCIPLES, ESH GOALS, AND ESH OBJECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>4.2</td>
<td>QUALIFIED WORKER SAFETY AND HEALTH STAFF</td>
<td>6</td>
</tr>
<tr>
<td>4.3</td>
<td>ACCOUNTABILITY</td>
<td>7</td>
</tr>
<tr>
<td>4.4</td>
<td>WORKER INVOLVEMENT</td>
<td>7</td>
</tr>
<tr>
<td>4.5</td>
<td>ACCESS TO INFORMATION</td>
<td>8</td>
</tr>
<tr>
<td>4.6</td>
<td>RESPONDING TO REPORTS</td>
<td>8</td>
</tr>
<tr>
<td>4.7</td>
<td>SAFETY AND HEALTH COMMUNICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>4.8</td>
<td>STOPPING UNSAFE WORK</td>
<td>9</td>
</tr>
<tr>
<td>4.9</td>
<td>INFORMING WORKERS OF RIGHTS</td>
<td>9</td>
</tr>
<tr>
<td>4.10</td>
<td>BUDGETING FOR SAFETY</td>
<td>10</td>
</tr>
<tr>
<td>4.11</td>
<td>SUSTAINING AND MEASURING ISEMS</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>WORKER RIGHTS</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>PARTICIPATING ON OFFICIAL TIME</td>
<td>11</td>
</tr>
<tr>
<td>5.2</td>
<td>ACCESS TO INFORMATION</td>
<td>11</td>
</tr>
<tr>
<td>5.3</td>
<td>NOTIFICATION OF MONITORING RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>5.4</td>
<td>OBSERVATION OF MONITORING</td>
<td>11</td>
</tr>
<tr>
<td>5.5</td>
<td>INSPECTIONS</td>
<td>12</td>
</tr>
<tr>
<td>5.6</td>
<td>WORKER CONCERNS</td>
<td>12</td>
</tr>
<tr>
<td>5.7</td>
<td>REFUSAL TO WORK</td>
<td>13</td>
</tr>
<tr>
<td>5.8</td>
<td>STOP UNSAFE WORK</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>WORKER RESPONSIBILITIES</td>
<td>14</td>
</tr>
<tr>
<td>6.1</td>
<td>SAFETY</td>
<td>14</td>
</tr>
<tr>
<td>6.2</td>
<td>REPORTING HAZARDS</td>
<td>14</td>
</tr>
<tr>
<td>6.3</td>
<td>REPORTING INJURIES AND ILLNESSES</td>
<td>14</td>
</tr>
</tbody>
</table>
7 HAZARD IDENTIFICATION AND ASSESSMENT [§851.21] ... 15
 7.1 IDENTIFYING WORKPLACE HAZARDS AND ASSESSING RISK [§851.21(a)]............................. 15
 7.2 WORKER EXPOSURE ASSESSMENT [§851.21(a)(1)] ... 15
 7.3 DOCUMENTING AND RECORDING WORKPLACE ASSESSMENTS [§851.21(a)(2)-(3)] 16
 7.4 NEW CONSTRUCTION AND FACILITIES MODIFICATIONS DESIGN REVIEW [§851.21(a)(4)] 16
 7.5 EVALUATING OPERATIONS, PROCEDURES, AND FACILITIES [§851.21(a)(5)] 16
 7.6 ACTIVITY-LEVEL HAZARD ANALYSIS [§851.21(a)(6)] .. 17
 7.7 REVIEWING SAFETY AND HEALTH EXPERIENCE [§851.21(a)(7)] ... 18
 7.8 INTERACTIONS BETWEEN WORKPLACE AND OTHER HAZARDS [§851.21(a)(8)] 19
 7.9 CLOSURE FACILITIES HAZARDS AND CONTROLS [§851.21(b)] .. 19
8 HAZARD CONTROL AND ABATEMENT [§851.22(A), (A)(2)(II)-(III), (B)] 20
 8.1 DEVELOPMENT OF CONTROLS FROM FACILITY DESIGN AND PROCEDURES DEVELOPMENT [§851.22(A)(1)] ... 20
 8.2 MANAGING IDENTIFIED SAFETY AND HEALTH NON-COMPLIANCES [§851.22(A)(2)] 20
 8.3 PURCHASING EQUIPMENT, PRODUCTS, AND SERVICES [§851.22(c)] 21
9 SAFETY AND HEALTH STANDARDS [§851.23 & 851.27] ... 22
10 TRAINING [§851.25] .. 26
11 RECORDKEEPING AND REPORTING [§851.26] .. 27
12 FUNCTIONAL AREAS [851-APP. A] .. 30
 12.1 CONSTRUCTION SAFETY [851-APP. A §1] .. 30
 12.2 FIRE PROTECTION [851-APP. A §2] .. 30
 12.3 EXPLOSIVES SAFETY (NOT APPLICABLE AT SLAC) [851-APP. A §3] 31
 12.4 PRESSURE SAFETY [851-APP. A §4] .. 31
 12.5 FIREARMS SAFETY (NOT APPLICABLE AT SLAC) [851-APP. A §5] 32
 12.6 INDUSTRIAL HYGIENE [851-APP. A §6] ... 32
 12.7 BIOLOGICAL SAFETY [851-APP. A §7] .. 32
 12.8 OCCUPATIONAL MEDICINE [851-APP. A §8] ... 32
 12.8.1 Role of Occupational Health Center .. 33
 12.8.2 Injury and Illness ... 33
 12.8.3 Medical Evaluations .. 34
 12.8.4 Health Information Management .. 34
 12.9 MOTOR VEHICLE SAFETY [851-APP. A §9] ... 34
 12.10 ELECTRICAL SAFETY [851-APP. A §10] ... 35
 12.11 NANOTECHNOLOGY SAFETY [851-APP. A §11] ... 35
 12.12 WORKPLACE VIOLENCE PREVENTION (RESERVED) [851-APP. A §12] 36
13 VARIANCES, CODE OF RECORD, AND EQUIVALENCIES .. 37
14 ENFORCEMENT .. 38
APPENDIX A: GLOSSARY .. 40
APPENDIX B: LIST OF EQUIVALENCIES AND OTHER AGREEMENTS PRE-DATING PROMULGATION OF THE RULE ... 42
1 Introduction

Title 10 of the Code of Federal Regulations (CFR), Part 851 (10 CFR 851), “Worker Safety and Health Program”, requires Department of Energy (DOE) sites to establish a worker protection program that will reduce or prevent the potential for injuries, illnesses, and accidental losses by providing workers with a safe and healthful workplace.

In this document, the SLAC Worker Safety and Health Program is referred to as “the WSHP” or “the Program”, 10 CFR 851 as the “the Rule”, and DOE Contract DE-AC02-76SF00515, 10/01/2012 – 09/30/2017 revised 8/29/2016 as “the Contract”. Appendix A contains a glossary of the acronyms and key terms used in this document.

This document describes the Worker Safety and Health Program (WSHP) that has been developed at the SLAC National Accelerator Laboratory (SLAC), a DOE site managed and operated (M&O contract) by Stanford University (the prime contractor), to comply with 10 CFR 851. The WSHP includes the regulations and standards specifically required by 10 CFR 851, the Contract and elements of the SLAC Integrated Safety and Environmental Management System (ISEMS).

The effective date of all elements of this Program (unless otherwise specifically noted below) is May 25, 2007. The effective date of this version is March 30, 2017.

1.1 Laboratory Mission

As a multi-purpose national laboratory managed by Stanford for the Office of Science, SLAC supports the DOE mission, which is to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. Within this mission, our aim is to leverage our intellectual capital, our relationship with Stanford and our location within Silicon Valley to:

- Innovate and operate world-leading accelerators, light sources and other scientific tools;
- Deliver transformative chemical, materials and biological science enabled by our unique facilities;
- Find solutions for the nation’s energy challenges; and
- Define and pursue a frontier program in the physics of the universe.

1.2 Locations

The Laboratory is located approximately 2 miles WSW of the main Stanford University campus, near the city of Menlo Park, in an unincorporated portion of San Mateo County, California.
1.3 Workforce

SLAC has approximately 1,500 employees. In addition, during the course of a year several hundred subcontractors work at the Laboratory, and SLAC hosts approximately 3,000 visiting scientists from universities, laboratories, and industrial concerns from the U.S. and foreign countries.

1.4 Purpose

The purpose of the WSHP is to ensure that SLAC provides a safe and healthful workplace, in which hazards are abated, controlled, or otherwise mitigated, providing assurance that workers are adequately protected from identified hazards that can potentially cause physical harm.

1.5 Scope

The SLAC WSHP applies to DOE contractor activities that are performed at SLAC. The Rule defines a contractor as “any entity, including affiliated entities, such as a parent corporation, under contract with DOE, including a subcontractor at any tier, with responsibility for performing work at a DOE site in furtherance of a DOE mission”. The Rule and thus the Program apply to design, construction, operation, maintenance, decontamination and decommissioning, research and development, and environmental restoration activities performed by SLAC staff and subcontractors at the site.

SLAC is a DOE M&O contractor worksite, and the multi-DOE contractor workplace coordination requirements contained in § 851.11(a)(2)(i)&(ii) of the Rule do not apply.

Contractors and employees hired directly by the DOE to work at SLAC are not covered under this Program, as they are the direct responsibility of the DOE.

1.6 Flowdown of 851 Requirements to Subcontractors

SLAC utilizes various construction and service subcontractors to perform work on the site, and the SLAC Supply Chain Management Department, within the Office of the Chief Financial Officer, procures and awards these subcontracts. Supply Chain Management ensures that all prime subcontractors1 will comply with the provisions of 10 CFR 851, DOE’s Worker Safety and Health Program, by including provisions in solicitations and the resulting subcontracts that require the subcontractors to meet the requirements of 10 CFR 851 and SLAC’s WSHP. Alternatively, subcontractors will be given the option to develop and submit their own 10 CFR 851-compliant worker safety and health plan for DOE SSO review and approval. Furthermore, SLAC requires prime subcontractors to flow these requirements down to the sub-tier subcontractors that they hire. It is an expressly stated expectation of SLAC that all subcontractors, both prime and sub-tier, must understand and conform to SLAC’s WSHP as applicable, and that they comply with 10 CFR 851 to the extent they are responsible for a covered workplace.

SLAC’s ESH Division pre-qualifies all prime subcontractors performing construction or high-risk service work. This is an important aspect of hazard mitigation in that successful implementation of health and safety requirements is challenging for some subcontractors. This “Subcontractor Safety Qualification” process is explained in detail in ESH Manual Chapter 42, “Subcontractor Safety”.

In accordance with 10 CFR 851 Appendix A, 1(d), for construction projects and high-risk service projects, prime subcontractors must submit a site-specific safety plan (SSSP) that details how they propose to conduct their work safely. This plan must be reviewed and approved by an ESH Division Representative or ESH Coordinator and the Project Manager (PM) or a trained SLAC employee responsible for oversight and direction, prior to commencement of the work. If there are also sub-tier subcontractors, the prime subcontractor must ensure that each sub-tier also prepares a SSSP which becomes a subset of the prime subcontractor’s overall SSSP. Depending on the work being done, a Field Construction Manager (FCM) or Service Manager (SM) will be assigned. The PM and FCM/SM

1 Prime subcontractors. A subcontractor directly contracted to SLAC; may have sub-tier subcontractors; may be general subcontractor or specialty subcontractor.
must follow the processes and procedures detailed in ESH Manual Chapter 42, “Subcontractor Safety”, to manage these types of projects. In addition, ESH’s Project Safety Department and Field Services Department perform field inspections of construction work to perform assurance of compliance with construction safety, building code, and fire code requirements.

A detailed website for Subcontractor Flowdown requirements (WSHP for Subcontractors) has been developed for subcontractors to access applicable information.

References:

1.7 Exclusions

The Program does not address radiological hazards associated with DOE activities. Radiological hazards are addressed in 10 CFR 820, 10 CFR 830, and 10 CFR 835 in a comprehensive manner through methods such as the Quality Assurance Program, Radiation Protection Program, safety bases, and documented safety analyses.

The Program does not apply to DOE activities performed away from DOE sites, such as transportation activities to and from DOE sites, and does not apply to work at the following locations, which are regulated by the California Department of Industrial Relations (i.e., Cal/OSHA) under Title 8 of the *California Code of Regulations*, Chapter 4, “Division of Industrial Safety”, Subchapter 7, “General Industry Safety Orders” (8 CCR Subchapter 7):

- Any work performed by SLAC workers at the main Stanford University Campus or at the Stanford Research Computer Facility.

As noted in Section 1.5, “Scope”, this Program does not cover contractors hired and managed directly by the DOE through either the SLAC Site Office (SSO), or any DOE Headquarters or Field Element.
2 Compliance

SLAC must comply with all the requirements of the Rule. Compliance is achieved by the SLAC Worker Safety and Health Program, as described in this document, which incorporates relevant sections of documents such as the SLAC ESH Manual and other supporting documents that can be found through the ESH website.

2.1 SLAC ESH Program

Pursuant to the Contract, SLAC has established an ESH Program that is integrated with its science programs. The ESH Program has been used as the foundation for the development of the SLAC WSHP that is described in this document.

2.2 Integrated Safety Management System

SLAC is required by DOE Policy 450.4A and H.5.0.1 Integration of Environment, Safety & Health Into Work Planning and Execution (DEAR 970.5223-1)(Dec 2000)(DEVIAITON for RWG)(Aug 2016) to have an Integrated Safety Management System (ISMS). SLAC has gone another step by integrating its Environmental Management System into an over-arching Integrated Safety and Environmental Management System (ISEMS). DOE and its contractors such as SLAC are committed to achieving a work environment in which all operations and work activities are supported by safety management systems that ensure the protection of the public, the worker, and the environment. The ISEMS is a systematic approach to integrating safety into management, work planning, and execution at all levels.

Institutional requirements for all work activities at SLAC are contained in the ISEMS Program and implemented by referenced chapters and sections of the ESH Manual, and the Stanford University Administrative Guide.

REFERENCES:
- ESH website
- Integrated Safety and Environmental Management Systems
- ESH Manual
- Stanford University Administrative Guide

2.3 Enforcement Process

DOE may initiate and conduct investigations and inspections relating to the scope, nature, and extent of compliance by SLAC with 10 CFR 851 and the Contract. Additionally, any worker or worker representative may request that DOE initiate an investigation or inspection. DOE Enforcement Officers have the right to enter work areas without delay, to the extent practicable, to conduct inspections. SLAC will fully cooperate with DOE during all phases of the enforcement process and provide complete and accurate records and documentation as requested during investigation or inspection activities. DOE must inform SLAC of the general purpose of the investigation or inspection in writing at the initiation of the investigation or inspection.

Should DOE initiate an enforcement action as the result of an investigation or inspection, SLAC will respond to the enforcement action in the following manner as appropriate and as specified in sections 851.4, 851.41, 851.42, 851.43, and 851.44 of the Rule.
3 Implementation

There are two tiers of implementation. In the first tier, 10 CFR 851 is implemented by the SLAC Worker Safety and Health Program, which incorporates the regulations and standards required by 10 CFR 851, the Contract, components of the SLAC ISEMS, and other components of the ESH Program. To implement the Rule, specific portions of existing programs and additional requirements as necessary are identified in the Program.

In the second tier, the Program is implemented by the documents that interface with workers, such as applicable sections of the SLAC ESH Manual and other ESH program documents found on the SLAC ESH website. These documents contain information on how the management practices prescribed by the program are implemented, how hazards that are associated with SLAC work activities are identified, how such hazards are controlled, and who is responsible for implementing the controls.
4 Management Responsibilities

4.1 Safety Policy, ISEMS Principles, ESH Goals, and ESH Objectives [§851.20(a)(1)]

SLAC is committed to performing all work safely and in a manner that strives for protection of employees, participating guests, visitors, subcontractors, the public, and the environment, commensurate with the nature and scale of work. In addition, SLAC seeks continuous improvement and sustained excellence in the quality of all ESH programs.

To achieve these goals, SLAC’s ISEMS is based on the seven guiding principles and five core functions of the Integrated Safety Management System (ISMS), as prescribed in the contract H.5.0.1 (Department of Energy DEAR Clause 970.5223-1 (Dec 2000)(Deviation) (DEVIATION for RWG)(Aug 2016), which are reflected in SLAC’s detailed policies and procedures. The SLAC Environmental Management System requires that work be done in a four-step process (i.e., plan, do, assess, improve) that is consistent with the seven guiding principles and five core functions of ISMS, as well as the SLAC National Accelerator Laboratory Management Plan.

The DOE order for implementing an oversight policy requires an ESH assurance system. SLAC uses assessments, both self and independent, to measure ISEMS implementation and identify opportunities for continuous improvement. Self assessments include line management walk-arounds, management system assessments, Director’s Assurance Council, Plan of the Week, and project reviews. Independent assessments include the Board of Overseers, Stanford University Internal Audits, and SSO reviews. Each year an Integrated Assessment Schedule is compiled for the following fiscal year to identify and track risk-based assessments. Through these assessments, SLAC assures both the SSO and Stanford University that work is being performed safely, securely and in conformance with requirements.

Annual safety and health performance objectives, measures, and targets for SLAC are established within the SLAC/DOE M&O Contract. These fiscal year contract performance objectives are then subsequently reflected in internal ESH goals and metrics established by SLAC senior staff.

ESH Manual Chapter 2, “Work Planning and Control”, and other documents describe in detail how work is planned, authorized, and released at the activity or project level to determine and ensure line management, supervisory, and employee safety responsibilities are identified and implemented. They also address qualifications and training, as well as engineering and procedural requirements associated with performing work at SLAC.

REFERENCES:

- Environment, Safety, and Health Policy
- SLAC National Accelerator Laboratory Management Plan (internal access only)
- Integrated Safety and Environmental Management Systems
- ESH Manual Chapter 1, “General Policy and Responsibilities“
- SLAC Quality Assurance Program (internal access only)
- SLAC Management Walk-Around Program (internal access only)
- SLAC Institutional Assessment Program (internal access only)
- SLAC External Requirements Database (internal access only)

4.2 Qualified Worker Safety and Health Staff [§851.20(a)(2)]

In keeping with SLAC’s ISEMS Guiding Principle 3, “Competence Commensurate with Responsibility”, and to ensure that worker health and safety staff is appropriately qualified, the ESH
Division and other organizations at SLAC employ or contract professional specialists and technical personnel with the following expertise:

- Electrical Safety
- Fire Protection
- Health Physics
- Industrial Safety
- Industrial / Chemical Hygiene
- Laser Safety
- Occupational Medicine and Ergonomics
- Biological Safety
- Pressure Safety
- Safety and Health Publications and Training

This staff consists of ESH specialists who provide direct support to SLAC programs and subject matter experts (SMEs) who maintain a working knowledge of the requirements contained in the standards associated with their assigned subject areas. Specialists and SMEs are designated individuals who are technically competent in their subject areas (e.g., certified industrial hygienists, certified safety professionals, or those who have demonstrated the years of applicable experience and good professional judgment at relevant facilities to perform the mission expected by SLAC’s ISEMS at an SC research accelerator activity). The lead SME for a program is designated a “Program Manager” and serves as the responsible person for the rules, requirements, and standards relevant to his or her area of expertise. The ESH Division maintains a master list of all Program Managers.

In addition, there are several positions that are officially appointed by the Laboratory Director (or the Chief Safety Officer) as “Safety Officers”. These include

- Chief Safety Officer (Director ESH Division)
- Fire Marshal
- Radiation Safety Officer
- Building Official
- Electrical Safety Officer
- Laser Safety Officer
- Chemical Hygiene Officer

REFERENCES:

Programs and Program Managers List (internal access only)

4.3 Accountability [§851.20(a)(3)]

The Laboratory Director has the ultimate responsibility for safety at the Laboratory, and in particular, for the establishment and administration of environment, health, and safety policies that meet the requirements of the Department of Energy.

This accountability is then extended to each SLAC line manager (Laboratory Director down to and including the first-line supervisor) and each individual (employee and non-employee alike) working at SLAC. SLAC utilizes a comprehensive set of employee Roles, Responsibilities, Accountabilities, and Authorities (R2A2s) to reinforce these responsibilities with its employees. This tool is part of their personnel files. These are reviewed and revised at least on an annual basis.

4.4 Worker Involvement [§851.20(a)(4)]

Worker involvement in safety and health is essential to the success of SLAC’s ISEMS. It is an individual’s responsibility to identify safety and health problems and to contribute to developing and
implementing solutions. Involvement and participation must occur throughout the work review, authorization, release, and execution process. Line management ensures that workers participate in the analysis of hazards and the determination of appropriate work controls for work activities. Employees must actively participate in this process by working with their supervisor to identify the hazards, controls, and training needed for them to safely perform their work. Periodic inspections involve employees noting deficiencies, and either correcting them on the spot or initiating corrective actions.

Worker involvement is promoted through

- Direct participation in the Activity and Training Authorization (ATA) work planning process
- Participation in incident investigations
- “All hands” safety meetings
- SLAC newsletters and websites
- Participation in divisional self-assessments
- Proactive utilization of Lessons Learned Database
- Safety training

4.5 Access to Information [§851.20(a)(5)]

Safety and health documents that contain the information needed to perform work safely are readily available via the SLAC website or at the worksite to all workers who need access to the information. All work, including work conducted by visiting researchers, students, subcontract labor, construction subcontractors, and service subcontractors, is to be performed in conformance with work instructions, including signs, work authorizations and releases, work permits, posted procedures, and other work-authorizing documents. If the work instructions cannot be followed safely as presented, or if they present a new hazard, the worker is responsible for notifying the appropriate individuals and assisting, as appropriate, with modifying the work instruction prior to beginning or continuing the work activity. The worker’s supervisor is responsible for ensuring that each worker involved in a work activity has been trained in, and has immediate access to, the work activity’s applicable procedures and governing requirements documents.

Workers have access to information that is related to the Program and to the performance measurement of safety and health.

REFERENCES:

- Employee ESH Concerns Program
- Stanford University Code of Conduct (Administrative Guide Memo 1.1.1)
- DOE Whistleblower Program (10 CFR 708.10)

 [Note: contact is DOE SSO Manager 650.926.3208]

4.6 Responding to Reports [§851.20(a)(6)-(7)]

Reports of incidents or recommendations are responded to promptly. Workers are responsible for bringing safety and health concerns promptly to the attention of the appropriate manager or supervisor for resolution. Line management is then responsible for investigating the concern and implementing corrective action. If a satisfactory response is not received, the senior manager for the organization should be contacted, followed by the Director of the ESH Division.

REFERENCES:

- Employee ESH Concerns Program
- Incident Reporting and Investigation Process (internal access only)
- Differing Professional Opinion (DPO) Process
4.7 Safety and Health Communications [§851.20(a)(8)]

Communication is a key element in ensuring that the SLAC ESH goals and health and safety requirements are met. SLAC has an established, comprehensive ESH Communications Program that includes training all workers. Communication goals include creating ISEMS awareness and sensitizing workers to safety and health issues, using Laboratory-wide communications and tailored training.

Directorates employ several methodologies to ensure that ESH programs and policies are communicated. These are done through the Senior Management Meeting (Laboratory Director’s staff), ESH Subcouncil, regular meetings between ESH Division and the line ESH Coordinators, direct involvement by ESH SMEs in project designs and reviews, annual Safety & Security Fair, and communications through the ESH website and SLAC Today articles.

REFERENCES:
- SLAC Today (see archives)
- OPEXShare (account registration required)

4.8 Stopping Unsafe Work [§851.20(a)(9)]

Any individual involved in a work activity that he or she believes poses an imminent hazard to him or herself, others, the public, and the environment, or could cause property damage has the responsibility and authority to stop that work. An individual also has the responsibility and authority to refuse to perform an assigned activity if doing so will present an imminent hazard. An imminent hazard is defined as any activity or situation that is likely to result in serious injury, death, or significant environmental or property damage.

An individual observing an activity presenting an imminent hazard has the authority to alert workers (including employees, SSO, and all classes of non-employees) engaged in that activity. The workers who are alerted are expected to stop working to discuss safety concerns. The responsible manager for the work area (e.g., supervisor, area manager, or foreman) must also be immediately notified and involved in safe restart of the work. If there are any questions or disputes about stopping unsafe work, the worker, the supervisor, and/or FCM/SM must contact SLAC Security at 650.926.5555, who notifies the on-call Duty Officer. The Duty Officer will coordinate with the appropriate line management to resolve the issue.

When an employee in the local bargaining unit believes an imminent hazard activity has not been adequately resolved within the line organization, he/she may refer it to the shop steward or Local Safety Committee. (Information on this authority as it applies to bargaining unit employees can be found in the latest version of the Agreement between the Board of Trustees of the Leland Stanford Junior University and United Stanford Workers.) Individuals who are not in the local bargaining unit should refer such unresolved activities to the Director of the ESH Division.

REFERENCES:

4.9 Informing Workers of Rights [§851.20(a)(10)]

Workers have the right to work in an environment free from recognized hazards likely to cause serious injury or death. SLAC will inform workers of their rights by appropriate means. A 10 CFR 851 information website has been created on the ESH website to provide comprehensive information to SLAC staff. Additionally, the DOE-designated Worker Protection Poster is posted on Management bulletin boards throughout the Laboratory. These are the same bulletin boards where other legally required posters are located. In addition, the SEIU Higher Education Worker Local 2007 will be encouraged to place the posters on their bulletin boards as well.
4.10 Budgeting for Safety

ESH is a primary consideration in planning and executing all SLAC work activities. Management is responsible for prioritizing and adequately allocating resources to ensure that ISEMS requirements for working safely can be fulfilled. Ensuring appropriate resources for ESH are allocated in program and budget plans, and for the implementation of all phases of facility and work-activity processes, is critical to making the ISEMS effective and sustainable. Some safety resources are budgeted and managed directly by mission program directorates. The ESH budget is covered through indirect (i.e., overhead), direct (e.g., DOE Safeguards & Security), service center charges, and direct chargebacks, under the accounting principles dictated by the office of the Chief Financial Officer. Overall budgeting for the indirect component of the ESH budget for the laboratory is approved by the Laboratory Director with recommendations from senior management then managed by the ESH Division Director.

4.11 Sustaining and Measuring ISEMS

The ESH Division Office supports line management in defining, capturing, and clearly communicating goals and objectives that are then measured and used to continuously improve plans for achieving SLAC’s Vision and Mission.
5 Worker Rights [§851.20(b)]

A 10 CFR 851 information website is available to provide all the key information associated with worker rights under the Worker Safety and Health Program.

5.1 Participating on Official Time [§851.20(b)(1)]

Workers have the right to participate in activities related to the Program on official time, including exercising all worker rights listed in the following Sections 5.2 through 5.8 of this document.

5.2 Access to Information [§851.20(b)(2)(i)-(iv)]

Workers have the right of access to

- DOE safety and health publications
- Documents describing the SLAC Worker Safety and Health Program
- Safety and health standards, controls, and procedures applicable to SLAC, as identified in such documents as the ESH Manual and supporting material
- Worker Protection for DOE Contractor Employees poster that informs workers of their rights and responsibilities
- Results of inspections and accident investigations that affect their work area
- Information on any recordkeeping log (e.g., OSHA Form 300) with access subject to Freedom of Information Act requirements and restrictions

REFERENCES:

- DOE Worker Safety and Health Poster
- SLAC Worker Safety and Health Program

5.3 Notification of Monitoring Results [§851.20(b)(3)]

Workers have the right to be notified when monitoring results indicate they have been overexposed to hazardous materials.

Written notification of monitoring results is provided by the industrial hygienist conducting the exposure monitoring to the employee (and employee’s supervisor) in accordance with the specific OSHA requirements for that substance. Where no criterion exists, monitoring results will be provided within 15 days of receiving analytical results from the laboratory performing the analyses.

REFERENCES:

- SLAC Industrial Hygiene Program

5.4 Observation of Monitoring [§851.20(b)(4)]

Workers have the right to observe exposure monitoring or measurement of hazardous agents and to be provided with the results of their own exposure monitoring. When personnel exposure monitoring is conducted on individuals, the monitored employee and their supervisor receive a copy of the exposure assessment.

REFERENCES:

- SLAC Worker Safety and Health Program
5.5 Inspections [§851.20(b)(5)-(6)]

Workers have the right to a representative authorized by workers to accompany the DOE Site Manager, or his or her authorized representative (e.g., DOE Enforcement Officer) during the physical inspection of the workplace for the purpose of aiding the inspection. When no authorized worker representative is available, the DOE Site Manager or authorized representative must consult, as appropriate, with workers on matters of worker safety and health.

REFERENCES:
- SLAC Worker Safety and Health Program

5.6 Worker Concerns [§851.20(b)(7)]

Workers have the right to express concerns related to worker safety and health.

SLAC has established procedures for workers to report, without fear of reprisal, job-related injuries, illnesses, fatalities, incidents, and hazards and to make recommendations about appropriate methods to control those hazards.

Federal law prohibits SLAC from making reprisals against workers for raising safety concerns. Employees of DOE contractors have the right to file confidential complaints with the local DOE office within 60 days regarding safety and health issues or reprisals, in accordance with 10 CFR 708. Workers may file a complaint with the DOE Employee ESH Concerns Program by calling, writing a letter, or submitting DOE Form 5480.4.

DOE Employee ESH Concerns Program
SLAC Site Office
2575 Sand Hill Road, MS-8A
650.926.4080
thomas.rizzi@science.doe.gov

If workers see something that is an immediate danger to safety or the environment, they should dial 911. After calling 911, they should call SLAC Security at ext. 5555 or 650.926.5555 and then report to their supervisor.

For non-life threatening situations, notifications are as follows:

- Abnormal conditions, accidents (non-life threat), near misses, security concerns, etc.: call ext. 5555 or 650.926.5555 and report the information to SLAC Site Security. They will notify the on-call Duty Officer who will identify immediate actions.

- Safety concerns: call the Safety Service Desk at 650.926.4554 or email concerns to ehs-safety@slac.stanford.edu

- Radiological concerns: call Radiation Protection Field Operations at 650.926.4299 (also to request a field survey)

- Health/Medical concerns: call the SLAC Occupational Health Center at 650.926.2281 or visit the SLAC Occupational Health Center in person at Building 028, Room 12. In the event of a work-related injury or illness, workers are required to notify their supervisor immediately and to report to the SLAC Occupational Health Center. After clinic hours, contact 650.926.5555 for directions.

- Training concerns: submit a help ticket for SLAC Training.

All workers are also covered under the Stanford University Code of Conduct, which provides mechanisms for reporting violations. Workers represented by SEIU Higher Education Workers Local 2007 are also covered under the provisions of the Collective Bargaining Agreement (CBA).

Workers who believe they are being denied the rights described in Section 5, or who believe they are being subjected to reprisals for attempting to exercise those rights, may contact the Stanford Office of Audit, Compliance, Risk and Privacy for assistance. Workers represented by SEIU Higher Education Workers Local 2007 may also report their concerns to their union representatives, or the local safety committee.
5.7 Refusal to Work [§851.20(b)(8)]

Workers have the right to decline to perform an assigned task because of a reasonable belief that the task poses an imminent risk of serious physical harm or death, coupled with a reasonable belief that there is insufficient time to seek effective redress through normal hazard reporting and abatement procedures.

References:
- DOE Worker Safety and Health Poster

5.8 Stop Unsafe Work [§851.20(b)(9)]

As noted in Section 4.8, “Management Responsibilities – Stopping Unsafe Work”, all workers are empowered and have the responsibility to refuse to perform an assigned activity if doing so will present an imminent hazard² and to stop the work if they become aware of an imminent danger condition. Furthermore, individuals observing such a situation have the responsibility to alert other workers engaged in that work activity. The responsible supervisor/manager for the area/employees (FCM/SM, in the case of subcontractors) must also be immediately notified and involved in safe restart of the work. Furthermore, the Duty Officer shall be notified by Security at ext. 5555.

References:

² Defined as any activity or situation that is likely to result in serious injury, death, or significant environmental or property damage.
6 Worker Responsibilities

6.1 Safety [§851.20(a)(3)]

In addition to management, workers also have critical responsibilities in the overall Worker Safety and Health Program. Details regarding high-level worker responsibilities for safety are included in the ESH Manual Chapter 1, “General Policy and Responsibilities”, and ESH commitments made by Associate Laboratory Directors to the Laboratory Director. Specific responsibilities are described in the various ESH program chapters.

Worker involvement in safety and health is essential to the success of SLAC’s ISEMS. Every worker is directly responsible for ensuring his or her own safety and for promoting a safe and healthful workplace and community.

Specifically, each person is to take personal responsibility for safety of people at SLAC and for protection of the environment.

It is each person’s individual responsibility to identify safety and health problems and to contribute to developing and implementing solutions. All workers are required to follow ESH-related work instructions, policies and procedures and other requirements. If work instructions cannot be followed safely as presented, or if they present a new hazard, workers are responsible for stopping and notifying the appropriate individuals and actively assisting, as appropriate, with modifying the work instructions. Involvement and participation must occur throughout the work review, authorization, release, and execution process.

REFERENCES:
- ESH Manual Chapter 1, “General Policy and Responsibilities”
- Environment, Safety, and Health Policy
- ESH Course 219, Environmental Safety and Health Orientation (ESH Course 219) (internal access only)

6.2 Reporting Hazards [§851.20(b)(7)]

Every worker is responsible for bringing to the attention of his or her immediate supervisor existing or previously unrecognized hazardous conditions and opportunities for safety improvement. The supervisor is responsible for evaluating the reports and for taking the appropriate follow-up action. Alternative means of reporting hazards can also be accomplished under the system described previously in Section 5.6, “Worker Concerns”. Incidents, hazards and “off-normal” situations are to also be reported to the Duty Officer through Security at ext. 5555.

6.3 Reporting Injuries and Illnesses [§851.20(b)(7)]

Workers who are injured or become ill as a result of a work-related activity or accident are required to notify their supervisor immediately and to report to the SLAC Occupational Health Center (see Section 5.6, “Worker Concerns”). A report should also be made to Security at ext. 5555 by the supervisor of the injured or ill employee.
7 Hazard Identification and Assessment [§851.21]

Work conducted at SLAC involves the risk of a variety of safety hazards. SLAC minimizes the risk and manages these hazards using the Integrated Safety and Environmental Management System (ISEMS) and by promoting safe behavior at all work levels.

Line managers implement an integrated safety management process to ensure that safety-related work issues have been addressed comprehensively. Managers follow the requirements in the ESH Manual Chapter 2, “Work Planning and Control”, to identify hazards and implement appropriate controls. SLAC’s ESH Division and Directorate ESH Coordinators provide support and guidance to line managers for identifying and mitigating the hazards in their workplaces.

Line managers perform the following safety functions in support of hazard identification and control efforts:

- Define the scope of work
- Analyze the hazards
- Develop and implement controls
- Authorize work
- Monitor the safety performance of their employees and provide prompt and useful feedback to influence safe behavior and continuous improvement

7.1 Identifying Workplace Hazards and Assessing Risk [§851.21(a)]

The identification and analysis of workplace hazards is part of the Work Planning and Control Process. The goal of this process is to ensure that the hazards associated with work activities and facility operations are clearly understood and appropriately controlled.

All new work activities or changes to existing work (which introduce new hazards or increase the hazard level) need to be reviewed to analyze hazards, identify safety standards/requirements, and establish appropriate controls. All work is planned, authorized, and released through the Work Planning and Control Process before work is initiated.

Area hazard analysis (AHA) is a tool by which line management and its personnel communicate area-specific hazards and entry requirements for use in the planning of work. Additionally, SLAC or DOE Lessons Learned are referenced to further identify potential hazards for mitigation.

REFERENCES:
- OPEXShare (account registration required)

7.2 Worker Exposure Assessment [§851.21(a)(1)]

SLAC assesses worker exposure to chemical, physical, biological, or workplace safety hazards through appropriate workplace monitoring, including industrial hygiene exposure assessments and management walk-arounds.

Exposure assessment is an evaluation process performed by ESH industrial hygienists and other experts to determine the risk to workers from personnel exposure to hazardous chemical, biological, or physical agents and the adequacy of hazard controls. Results of exposure assessments may be used to validate or improve hazard controls, extend the same controls to other employees who are similarly exposed, provide employees with appropriate medical tests and examinations (i.e., medical surveillance) to monitor employee health, and demonstrate compliance with regulations.
7.3 Documenting and Recording Workplace Assessments [§851.21(a)(2)-(3)]

Assessments for chemical, physical, biological, and workplace safety hazards are documented following recognized exposure assessment and testing methodologies and using accredited and certified laboratories where appropriate.

Exposure monitoring results are recorded with documentation that describes the tasks and locations where monitoring occurred, and identifies:

- Workers monitored or represented (such as in-area sampling) by the monitoring
- Sampling methods and durations
- Control measures in place during monitoring (including use of personal protective equipment)
- Job task and location
- Findings/recommendations
- Any other factors that may have affected sampling results

Additionally, all levels of SLAC managers conduct management walk-arounds as identified in Management Walk-Around Program document. The purpose of these management walk-arounds is to improve organizational performance and safety. During these walk-arounds, managers interact with their employees and have meaningful discussions about workplace safety. Managers observe work, reinforce safe work behaviors, and identify ways to help their staff improve work effectiveness and safety. These walk-arounds are documented using SLAC’s Action Tracking System.

7.4 New Construction and Facilities Modifications Design Review [§851.21(a)(4)]

New construction projects and facilities modifications are reviewed for hazards and risks and to ensure that appropriate ESH requirements are integrated into the planned project or facility. ESH requirements are identified through the Project ESH Review Process and are incorporated into the project’s design. This process originates from ESH Manual Chapter 1, “General Policy and Responsibilities”. ESH Division professionals are assigned review and concurrence authority in all four phases of project design: conceptual design, preliminary design, final design, and construction inspection. Refer to Section 8, “Hazard Control and Abatement”, of this Plan.

7.5 Evaluating Operations, Procedures, and Facilities [§851.21(a)(5)]

The ESH Manual emphasizes how to conduct work at the work-activity level. In a research and development organization such as SLAC the focus is on the identification of hazards associated with
individual work activities, because these activities can change frequently and introduce different hazards that have not been evaluated.

At SLAC, hazard identification is accomplished

- On a routine/ongoing basis
- During regularly scheduled assessment activities
- As an integral component of the Work Planning and Control Process

Examples of routine/ongoing hazard identification include daily or pre-use inspections of the following:

- Ladders
- Condition of electrical equipment
- Hoist, crane and accessory equipment
- Extendable boom work platforms
- Active construction projects
- Hand and power tools
- Manually handling load pre-lifts
- Elevating work platforms
- Forklifts

As described above in Section 7.2, “Worker Exposure Assessment”, self-assessment programs are regularly scheduled hazard identification activities that establish a formal, internal process used to evaluate ESH programs, policies, and processes.

Other regularly scheduled hazard identification activities include the following:

- Fire safety inspections
- Annual review of hazardous energy control procedures
- Idle crane pre-use inspection
- Annual running rope inspection
- Biennial forklift extension proof load testing
- Lifting device and fixture inspection and testing
- Quarterly hoist, crane and accessory equipment inspection
- Nondestructive crack detection of crane/hoist hooks and of all lifting fixtures with welds
- Annual laser safety inspections of Class 3B and Class 4 laser labs

Certain work activities pose elevated hazards that require formal, documented approvals, often in the form of a permit. Examples include excavations, hot work, and confined space. Depending on the requirements, the principal investigator, supervisor, or manager needs to document the work and associated hazards, describe administrative and engineering controls to mitigate those hazards, and document training or certification for the participants in a written document or plan. Experts with appropriate certifications or background from within ESH and other divisions are brought into the process for consultation, review, and/or approval. An online Hazard Evaluation and Planning eTool is available to identify required permits and plans based on the work activity.

REFERENCES:

- SLAC Management Walk-Around Program (internal access only)
- Hazard Evaluation and Planning eTool (internal access only)

7.6 Activity-level Hazard Analysis [§851.21(a)(6)]

Operations and procedures are analyzed at the activity level to identify potential worker protection hazards and deficiencies. How work is planned, authorized, and released depends on the type (green, yellow, or red) and the location (office/non-office and resident/non-resident area).
“Green” work is work limited to those technical or administrative activities commonly performed by the public, posing well known hazards, with controls that may be implemented without permits or special ESH training, excluding training required to simply access an area. Green work is authorized by completion of new employee/worker safety training, and for work in office areas is released by the same new employee/worker safety training. Green work in non-office areas (industrial areas) requires release by the area or building manager if required on the Area Hazard Analysis (AHA) or other postings. Otherwise, if the worker is familiar with the area, has read the AHA, has no ESH concerns, and adheres to all postings, the worker is released to perform the work.

“Yellow” work is non-green work performed in one’s resident area, or non-green work performed outside one’s resident area requiring two or fewer work groups working simultaneously or requiring two or fewer permits or plans. Yellow work in a worker’s resident area is authorized and released with an up-to-date SLAC Training Assessment (STA) and supervisor acknowledgment of worker’s ability to carry out assigned work. Documenting routine hazards and controls is not required, but supervisors may use a JSA, SOP, or ATA for this purpose. When a worker is dispatched outside their resident area, a JSA or SOP is typically required for authorization, and the work is released by the area manager. Some simple activities performed outside a worker’s resident area (e.g., climbing a ladder to perform green work) may be authorized without a JSA or SOP, as determined by the supervisor.

“Red” work is work that requires detailed planning and coordination because the number of interdependent controls and/or different work groups required to complete the scope of work, and includes any work that requires three or more permits or plans, or three or more work groups working simultaneously. Red work is authorized at the activity level like non-resident yellow work. In addition, the planning efforts are documented by the work planner on a Work Integration Plan (WIP); a coordination meeting is held to discuss the activities, timing, permits, and so on until the area manager is satisfied that a release may be granted; a tailgate briefing is required to release work for each worker before beginning any activity.

REFERENCES:

7.7 Reviewing Safety and Health Experience [§851.21(a)(7)]

At SLAC, data and information regarding workplace accidents, injuries, and illnesses is collected by the Contractor Assurance and Contract Management (CACM) Department and analyzed to identify worker protection problem areas. Analysis techniques may include:

- Establishing correlation between deficiencies and circumstances that cause them
- Predicting outcomes based on observation, experience, or reason
- Looking at indicative signs and/or symptoms
- Estimating future possibilities of recurrence
- Systems and methods to collect, record, compile, and manage accident, injury, and illness data and information, including but not limited to, the OSHA 300 log of occupational injuries and illnesses, workers’ compensation data, accident reports, incident reports, industrial hygiene exposure monitoring results, inspection reports and Action Tracking System (ATS) entries.
- Methodologies to analyze data and information to identify and trend accidents, injuries, and illnesses by type and source
- Lessons Learned are managed through OPEXShare, a web resource used by numerous DOE sites to share operating experience and institutional knowledge. Lessons learned are disseminated to appropriate personnel (e.g., managers, ESH Coordinators).

Identified issues and their associated corrective actions are tracked in accordance with the Issues and Improvements Program.
7.8 Interactions between Workplace and Other Hazards [§851.21(a)(8)]

For the purpose of this document, workplace hazards are defined as physical, chemical, biological, and safety hazards with any potential to cause illness, injury, or death to a person. In instances where the requirements for other hazards (such as radiological hazards) overlap or appear to conflict, the personnel responsible for authorizing work shall take into account such requirements prior to authorizing work. Conflict shall be resolved prior to authorization to minimize confusion and to provide clear guidance to the worker(s). If conflicts arise during release, they shall be resolved prior to work commencing. SMEs or safety officers shall be consulted, if necessary, to resolve technical conflicts.

References:

7.9 Closure Facilities Hazards and Controls [§851.21(b)]

Prior to closure of an existing facility at SLAC, stakeholders, including the DOE and Stanford University, are consulted to ensure that appropriate processes and expectations are met. Guidance documents such as “Radiological Clearance of Real Property at SLAC” (Radiation Protection Department Document, RPD-012) are consulted in development of a decommission and disassembly (D&D) plan. Additionally, an Excess Facility Program has been implemented to establish SLAC Excess Facility Program-Transition, Deactivation, Surveillance & Maintenance, Decommissioning guidelines, processes, and procedures.

References:
- Excess Facility Program
8 Hazard Control and Abatement [§851.22(a), (a)(2)(ii)-(iii), (b)]

SLAC has implemented a hazard prevention and abatement process to ensure that identified and potential hazards are prevented or abated in a timely manner. Abatement actions are prioritized and implemented according to the risk to workers. Interim protective measures are implemented as appropriate, pending final abatement.

The classic hazard control hierarchy is used to minimize worker safety and health risk:

- Elimination or substitution of the hazards where feasible and appropriate
- Use of engineering controls where feasible and appropriate
- Application of work practices and administrative controls that limit worker exposures
- Provision and use of personal protective equipment

This hierarchy is included in the ESH Manual Chapter 1, “General Policies and Responsibilities”, and Chapter 40, “Chemical Lifecycle Management”.

8.1 Development of Controls from Facility Design and Procedures Development [§851.22(a)(1)]

Facility designs developed by engineering professionals are reviewed by other members of the project team, and by subject matter experts from the SLAC Accelerator Engineering Division, SLAC Facilities Division, the ESH Division, and other elements of SLAC. Safety and health professionals review designs for compliance with safety and health requirements. The number and rigor of design reviews vary depending on project size and complexity. The process for large construction projects includes a design review at the conceptual design stage, preliminary design stage, and final design stage.

Hazards that are identified in the design phase of new facilities and facility modifications or during the development or modification of procedures are eliminated or controlled through design or procedure changes. The controls implemented are commensurate with the risk level identified in the review process. Where hazards cannot be controlled through design changes, procedural or administrative controls, the use of personal protective equipment is considered. References are covered in Section 8, “Hazard Control and Abatement”.

Under the project review process, the SLAC Building Inspection Office (BIO) serves as the primary coordinator for all construction projects and identifies the appropriate authority having jurisdiction (AHJ)/SME reviews for the design and oversight of the construction. This process is described in depth in ESH Manual Chapter 1, “General Policy and Responsibilities”.

8.2 Managing Identified Safety and Health Noncompliances [§851.22(a)(2)]

Identified safety and health noncompliant conditions, including de minimis violations, are managed through the SLAC Action Tracking System (ATS). The ATS provides a centralized method of managing issues through closure with management involvement based on the significance level of the identified issue.
8.3 Purchasing Equipment, Products, and Services [§851.22(c)]

SLAC’s Purchase Requisition System specifically identifies high hazard items for special ESH review (The two radiation-related items listed below are covered under 10 CFR 835 but are listed here for the sake of completeness). These items include:

Chemicals, Gases, and Fuels

- All purchases of hazardous materials (solids, liquids, gases, cryogens) go through the Chemical Management System. SLAC's Chemical Lifecycle Management Program Manager oversees this program.

Pressure Systems

- All purchases of pressure vessels, cryogenic systems, vacuum systems, and related devices require the review of the Pressure Systems Safety Program Manager or designee.

Radiation Generating Devices

- All purchases of radiation generating devices require the review and approval of the SLAC Radiation Safety Officer.

Radioactive Material

- All purchases of radioactive material require the review and approval of the SLAC Radiation Safety Officer.

Class 3B and 4 Lasers

- All purchases of laser light generating devices and laser PPE require the notification of the SLAC Laser Safety Officer.

Hoisting and Rigging Equipment

- All purchases of hoisting and rigging equipment require the review and approval of the SLAC Hoisting and Rigging Program Manager.

This is done through an electronic system that directs the requisition to the appropriate safety Program Manager for review and approval prior to going to the Buyer for assignment. The electronic review is triggered in one of two ways: (1) by the requestor completing the required hazardous item identification page in the eProcurement system; or (2) the item’s UNSPSC code.

In addition, safety and health issues regarding services (e.g., construction and service subcontractors) are addressed under Section 1.6, “Flowdown of 851 Requirements to Subcontractors”.

REFERENCES:

- Office of the Chief Financial Officer Purchase Requisition to Purchase Order Process (internal access only)
- Procurement Procedures (internal access only)
9 Safety and Health Standards [§851.23 & 851.27]

The Rule requires SLAC to comply with a defined set of safety and health standards that SLAC has evaluated to be applicable to SLAC workplaces. The following table lists the applicable standards specifically called out in 10 CFR 851.23 and 10 CFR 851.27 and/or the standards chosen to be implemented based on review by SLAC SMEs in accordance with the Contract and the corresponding SLAC ESH programs. Currently adopted revisions of standards are listed, if these are later editions than those cited originally in 10CFR 851, then the original code edition is noted [in brackets].

Table 9.1 Applicable Safety and Health Standards and SLAC Programs

<table>
<thead>
<tr>
<th>Safety and Health Standard (Code Edition)*</th>
<th>Corresponding SLAC Programs</th>
</tr>
</thead>
</table>
| 10 CFR 850, “Chronic Beryllium Disease Prevention Program” | • Chronic Beryllium Disease Prevention Program
• SLAC Occupational Health Center |
| 29 CFR 1904.4 through 1904.11; 1904.29 through 1904.33; 1904.44; and 1904.46, “Recording and Reporting Occupational Injuries and Illnesses” | • Incident Reporting and Investigation Process (internal access only)
• SLAC Human Resources: Employee/Labor Relations - Disabilities, Leaves and Time off
• SLAC Occupational Health Center |
In some cases, more restrictive Cal/OSHA (8 CCR) regulations are used (e.g., Fall Protection, Ladder Safety, Service Subcontractor Safety, etc.). | ESH Manual:
• Chapter 6, “Confined Space”
• Chapter 8, “Electrical Safety”
• Chapter 10, “Laser Safety”
• Chapter 11, “Excavation Safety”
• Chapter 12, “Fire and Life Safety”
• Chapter 15, “Ladder and Scaffold Safety”
• Chapter 16, “Spills”
• Chapter 18, “Hearing Conservation”
• Chapter 19, “Personal Protective Equipment”
• Chapter 20, “Lead Safety”
• Chapter 24, “Training”
• Chapter 25, “Machine and Portable Tools”
• Chapter 27, “Asbestos”
• Chapter 29, “Respiratory Protection”
• Chapter 32, “Polychlorinated Biphenyls”
• Chapter 36, “Cryogenic and Oxygen Deficiency Hazard Safety”
• Chapter 37, “Emergency Management”
• Chapter 40, “Chemical Lifecycle Management”
• Chapter 41, “Hoisting and Rigging”
• Chapter 44, “Penetration Safety”
• Chapter 45, “Fall Protection”
• Chapter 46, “Bloodborne Pathogens”
• Chapter 47, “Mobile Elevating Work Platforms”
• Chapter 48, “Powered Industrial Vehicles” |
<table>
<thead>
<tr>
<th>Safety and Health Standard (Code Edition)*</th>
<th>Corresponding SLAC Programs</th>
</tr>
</thead>
</table>
• Chapter 53, “Chemical Safety” |

In some cases, more restrictive Cal/OSHA (8 CCR) regulations are used (e.g., Fall Protection, Ladder Safety, Service Subcontractor Safety, etc.).

ESH Manual:
• Chapter 6, “Confined Space”
• Chapter 8, “Electrical Safety”
• Chapter 10, “Laser Safety”
• Chapter 11, “Excavation Safety”
• Chapter 12, “Fire and Life Safety”
• Chapter 15, “Ladder and Scaffold Safety”
• Chapter 18, “Hearing Conservation”
• Chapter 19, “Personal Protective Equipment”
• Chapter 20, “Lead Safety”
• Chapter 24, “Training”
• Chapter 25, “Machine and Portable Tools”
• Chapter 27, “Asbestos”
• Chapter 29, “Respiratory Protection”
• Chapter 37, “Emergency Management”
• Chapter 40, “Chemical Lifecycle Management”
• Chapter 41, “Hoisting and Rigging”
• Chapter 42, “Subcontractor Safety”
• Chapter 44, “Penetration Safety”
• Chapter 45, “Fall Protection”
• Chapter 47, “Mobile Elevating Work Platforms”
• Chapter 51, “Control of Hazardous Energy”

American Conference of Governmental Industrial Hygienists (ACGIH), “Threshold Limit Values (TLVs) for Chemical Substances and Physical Agents & Biological Exposure Indices (BEI) (2016)
(The year 2005 was cited in 10 CFR 851.)

Based on SME review; the following alternative standards will be used in lieu of ACGIH TLVs:

Silica: 29 CFR 1926.1153 Respirable crystalline silica

Optical Radiation: Laser: ANSI Z136.1 Safe Use of Lasers (2014)

Non-ionizing Radiation: IEEE C95.1 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz (2005) & C95.1a (2010)

SLAC Industrial Hygiene Program
ESH Manual:
• Chapter 10, “Laser Safety”
• Chapter 18, “Hearing Conservation”
• ESH Manual Chapter 50, “Non-ionizing Radiation”
• ESH Manual Chapter 54, “Ergonomics”
<table>
<thead>
<tr>
<th>Safety and Health Standard (Code Edition)*</th>
<th>Corresponding SLAC Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Society of Mechanical Engineers (ASME) Boilers and Pressure Vessel Code, section I through XII, including applicable code cases, (2015) (The year 2004 was cited in 10 CFR 851.)</td>
<td>• ESH Manual Chapter 14, “Pressure Systems”</td>
</tr>
<tr>
<td>SCP for DOE O 232.2, “Occurrence Reporting and Processing of Operations Information”</td>
<td>• Incident Reporting and Investigation Process (internal access only)
• SLAC Human Resources: Employee/Labor Relations - Disabilities, Leaves and Time off
• SLAC Occupational Health Center</td>
</tr>
<tr>
<td>Applicable state and local codes</td>
<td>• 2016 California Building Code
• 2016 California Fire Code
• 2016 California Mechanical Code
• 2016 California Plumbing Code</td>
</tr>
</tbody>
</table>
Notes:

* For referenced consensus standards with specific dates, SLAC will evaluate the adoption of more recent revisions, after performing an analysis of the changes, and receiving concurrence from the DOE SLAC Site Office, as appropriate. In some cases SLAC Program Managers may choose to implement selected elements of updated consensus standards that enhance worker safety without formal adoption of the entire revised standard.

- The Contract Management Group maintains current standards adopted by SLAC in the External Requirements Database.

10 Training [§851.25]

The SLAC ESH Training Program is a collaborative endeavor between ESH and line management. Line management provides on-the-job training (OJT); training specific to the work conducted in its actual environment, and ensures that training requirements are met. SLAC Training provides scheduling and data tracking systems to support ESH training initiatives; trainers, classrooms, practical and web-based courses, and training program support and oversight. SLAC Training draws upon the resources of subject matter experts (SMEs) from a variety of organizations (e.g., Environmental Protection, Radiation Protection, Field Services, etc.) for content and delivery of instruction.

SLAC policy, and the federal law, requires that all staff, contractors, subcontractors and sub-tier contractors, participating guests, visitors, and others who perform work at, or for, SLAC receive appropriate training necessary to protect their health and perform work in a safe and environmentally sound manner. Training is provided to new workers before or at the time of initial assignment, periodic training as often as required or necessary and retraining or additional training when safety and health information or a change in workplace conditions indicates that a new or increased hazard exists. This training includes information regarding job hazards, possible health effects, and required work practices and procedures. There are site access restrictions that correspond to increasing levels of training requirements (e.g., Environmental Safety and Health Orientation; Construction Safety Orientation; General Employee Radiological Training (GERT); and Radiological Worker Training I and II).

References:

- **ESH Manual Chapter 24, “Training”**
- **SLAC Training Portal (includes catalog, schedules, web-based training, SLAC Training Assessment (STA), training history and reports, etc.)**
- **On-the-Job Training Requirements**
11 Recordkeeping and Reporting [§851.26]

SLAC is responsible for establishing and maintaining recordkeeping and reporting processes for data related to health and safety including

- Hazard inventories, assessments, and abatement
- Exposure measurements and controls
- Injuries and illnesses
- Safety and health deficiencies

It is specifically prohibited from concealing or destroying information concerning noncompliance or potential noncompliance with the requirements of this WSHP or the Rule.

SLAC uses a variety of methods to track safety and health data. For example, the chemical inventory is tracked using an electronic database. This database is also used to maintain copies of and provide access to safety data sheets (SDSs) for all chemicals used at SLAC. The Industrial Hygiene Document Database contains all SLAC IH sampling reports. The SLAC Industrial Hygiene Group is responsible for maintaining inventories/data associated with exposure control systems (e.g., emergency eyewash/showers, ventilation systems, fixed chemical detection systems, etc.).

The ESH Division tracks injuries and illnesses at SLAC. This information is reported to DOE in accordance with the SSO approved Site Compliance Plan (SCP) for DOE Order 231.1B Admin Chg 1, “Environment, Safety and Health Reporting”. Furthermore, SLAC’s employees are Stanford University employees and are therefore included under Stanford University for purposes of OSHA 300 compliance and U.S. Bureau of Labor Statistics reporting. This information is maintained by Stanford University’s Risk Management Department.

Top tier subcontractors are required to provide SLAC with copies of reports for all OSHA-recordable injuries and illnesses occurring on site. SLAC employees are required, and contract workers are encouraged, to visit SLAC Occupational Health Center whenever work-related injuries and occupational illnesses occur. SLAC reporting requirements are in addition to, and do not replace, subcontractor employer reporting, recordkeeping, and other obligations under OSHA regulations.

The CACM Department is responsible for managing the process for occurrence reporting and incident analysis. This reporting is used to categorize, report, and process information about events or conditions related to Laboratory-controlled or managed buildings, experiments, or other activities in support of Laboratory operations that meet the site-specific reportable occurrence criteria in the DOE Occurrence Reporting and Processing Systems (ORPS).

REFERENCES:

- Chemical Management System (tcmIS) (internal access only)
- tcmIS MSDS website (internal access only)
- Industrial Hygiene Document Database (internal access only)
- OPEXShare (account registration required)
- Incident Reporting and Investigation Process (internal access only)
- Table 11.1: NTS Reporting Thresholds for 10 CFR 851 (see below)
Table 11.1 DOE Noncompliance Tracking System (NTS) Reporting Thresholds for 10 CFR 851

Worker Safety and Health Noncompliance Reporting Criteria

Worker Safety and Health Noncompliances Associated with Occurrences (DOE Order 232.2, Admin Chg. 1)

Consult the DOE Order for the full text of each occurrence criterion.

<table>
<thead>
<tr>
<th>Reporting Criteria Group</th>
<th>Subgroup</th>
<th>Occurrence Category and Summary Description</th>
</tr>
</thead>
</table>
| 1. Operational Emergencies³ | N/A | (1) Operational Emergency Alert
(2) Site Area Emergency
(3) General Emergency |
| 2. Personnel Safety and Health | A. Occupational Injuries | (1) Fatality/terminal injury
(2) Inpatient hospitalization of ≥ 3 personnel
(3) Inpatient hospitalization ≥ 5 days
(4) ≥ 3 personnel having DART cases
(5) Serious occupational injury |
| | B. Occupational Exposure | (1) Fatality/terminal illness or inpatient hospitalization of ≥ 3 personnel
(2) Inpatient hospitalization ≥ 5 days or ≥ 3 personnel having DART cases
(3) Personnel exposure > 10X limits or > IDLH
(4) Personnel exposure > limits but < IDLH requiring medical treatment
(5) Exposure resulting in serious occupational injury
(6) Personnel exposure > limits but < IDLH |
| | C. Fires | (1) Fire within primary confinement/containment
(2) Fire in a nuclear facility
(3) Fire in a non-nuclear facility |
| | D. Explosions | (1) Unplanned explosion within primary confinement/containment
(2) Unplanned explosion in a nuclear facility
(3) Unplanned explosion in a non-nuclear facility |
| | E. Hazardous Electrical Energy Control | (1) Unexpected/unintended personal contact
(2) Unexpected discovery of uncontrolled energy source |
| | F. Hazardous Energy Control (other than electrical) | (1) Unexpected/unintended personal contact
(2) Unexpected discovery of uncontrolled energy source |
| 4. Facility Status | B. Operations | (1) Stop Work Order from DOE |
| 10. Management Concerns | N/A | (1) Initiation of a Federal Accident Investigation
(3) Near miss |

³ Based upon DOE’s published 10 CFR 851 NTS Reporting Thresholds (revised April 2015).
Reporting Threshold

<table>
<thead>
<tr>
<th>Noncompliance Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity Level I noncompliance(s) with Parts 851 or 850 (Refer to Part 851, Appendix B, Section VI(b)(1))</td>
<td>Conditions of noncompliance identified by any method or means (e.g., assessments, inspections, observations, employee concerns, event evaluation) that represent a condition or hazard that has the potential to cause death or serious physical harm (injury or illness). These conditions include imminent danger situations.</td>
</tr>
<tr>
<td>Programmatic deficiencies involving noncompliances</td>
<td>A programmatic problem generally involves some weakness in administrative or management controls, or their implementation, to such a degree that a broader management or process control problem exists and requires broad corrective actions.</td>
</tr>
<tr>
<td>Repetitive noncomplaints</td>
<td>Two or more different events/conditions that involve substantially similar work activities, locations, equipment, or individuals.</td>
</tr>
<tr>
<td>Intentional violation or misrepresentation</td>
<td>Also known as willful noncompliance; may involve record falsification.</td>
</tr>
<tr>
<td>Substantiated management reprisal(s) against worker(s) for raising safety issues associated with 851.20(a)(6) or (9)</td>
<td>Customarily referred to as worker retaliation.</td>
</tr>
</tbody>
</table>

Notes to tables

1. The simple occurrence of an event or discovery of a condition in any of the listed categories is not by itself sufficient to warrant NTS reporting. NTS reporting requires the identification of a 10 CFR 850 or 851 noncompliance in conjunction with the event or discovery. Contractors identifying a significant worker safety and health noncompliance in association with an event/discovery type or category not listed on the table should evaluate the event for NTS reportability, particularly under the “Severity Level I Noncompliances” category.

2. These summary descriptions are a brief characterization of the related criteria. Use the full statement of the criteria contained in DOE Order 232.2, Admin Ch. 1 to determine NTS reportability of event-related worker safety and health noncompliances.

3. Report worker safety and health noncompliances associated with any of the DOE Order 232.2, Admin Ch. 1 Operational Emergency categories (Operational Emergency, Alert, Site Area Emergency, or General Emergency) per the SCP.

4. Refer to Chapter IV of the Enforcement Process Overview for more information about these types of noncompliances.

5. Conditions of noncompliance identified by any method or means (e.g., assessments, inspections, observations, employee concerns, event evaluation) that would not otherwise be reported into NTS as either a Management Issue or Occurrence, but that represent a condition or hazard that has the potential to cause death or serious physical harm (injury or illness). These conditions include imminent danger situations.
12 Functional Areas [851-App. A]

The documents that are cited in this section are incorporated by reference. Citations of specific sections of the SLAC ESH Manual or other reference sources refer to the most current version of these documents as of the date of publication of this document. This section is based on the requirements of Appendix A of 10 CFR 851.

12.1 Construction Safety [851-App. A §1]

The SLAC Construction Safety Program is governed by ISEMS principles. Construction work performed at SLAC complies with 29 CFR 1910 (except 29 CFR 1910.1096), 29 CFR 1926, and applicable sections of SLAC’s ESH Manual. Construction subcontractors, labor-only subcontractors, and SLAC workers may perform construction work at SLAC.

Construction Safety hazard assessment is performed through documented tools such as reviewing the subcontractor’s injury history and written safety and health manual, Site-specific Safety Plans (SSSPs), Job Safety Analyses (JSAs), Elevated Surface Work Plans (ESWPs), Excavation Permits, Hot Work Permits, etc.

An essential element of the Construction Safety Program is that subcontractors awarded work at SLAC are required to submit a comprehensive Site-specific Safety Plan (SSSP) that details how they propose to conduct their work safely. This plan is based on the hazards inventory that the subcontractor compiled during the pre-bid visit and any subsequent visits they may have made. The safety plan must satisfy the requirements as described in ESH Manual Chapter 42, “Subcontractor Safety”. Additionally, prime subcontractors are required to submit a Subcontractor Safety Qualification Form, which documents their recordable case rate, worker’s compensation experience modifier, past OSHA violations, and relevant experience to demonstrate their qualifications to perform work at SLAC. Construction subcontracts will include detailed safety and health requirements in Division 1 of the project specifications. The subcontractor is not given a notice to proceed until the appropriate work planning documents have been reviewed by ESH, Purchasing, the Project Manager, and by the designated Field Construction Manager and are determined to be acceptable. Prime subcontractors must ensure their sub-tier subcontractors perform their work in accordance with SLAC’s ESH and Work Planning Control requirements.

REFERENCES:
• ESH Manual Chapter 2, “Work Planning and Control”
• SLAC Industrial Hygiene Program
• ESH Manual Chapter 6, “Confined Space”
• ESH Manual Chapter 8, “Electrical Safety”
• ESH Manual Chapter 11, “Excavations”
• ESH Manual Chapter 41, “Hoisting and Rigging”
• ESH Manual Chapter 42, “Subcontractor Safety”
• ESH Manual Chapter 44, “Penetration Safety”
• ESH Manual Chapter 45, “Fall Protection”
• ESH Manual Chapter 51, “Control of Hazardous Energy”

SLAC has a comprehensive Fire Protection Program that implements fire safety and emergency response elements designed to protect workers. The program includes appropriate facility and site-wide fire protection, fire alarm notification and egress features, and a fully staffed, trained, and
equipped emergency response organization that is capable of responding in a timely and effective manner to site emergencies.

The SLAC Fire Protection Program implements DOE Order 420.1C through an approved Site Compliance Plan and all other DOE-prescribed fire protection codes and standards that are applicable to SLAC (e.g. all applicable National Fire Protection Association (NFPA) standards). SLAC uses the 2016 California Building Code and California Fire Code, along with the Uniform Mechanical Code (UMC) to maintain consistency with surrounding communities. The SLAC Fire Marshal is the authority having jurisdiction (AHJ) for routine interpretation and application of NFPA standards and codes. The SLAC Site Office Manager delegates this authority to the Fire Marshal through the SLAC Lab Director in compliance with DOE 420.1C allowances.

The SLAC Fire Safety and Emergency Response Programs are primarily defined in the ESH Manual Chapter 12, "Fire and Life Safety", and Chapter 37, "Emergency Management".

REFERENCES:
- ESH Manual Chapter 12, “Fire and Life Safety”

12.3 Explosives Safety (Not Applicable at SLAC) [851-App. A §3]

Explosives safety per 10 CFR 851 requirements are not applicable at SLAC because there are only small quantities of chemicals on the site that may exhibit the characteristics of explosive as defined in the DOE Explosives Standard (DOE-STD-1212-2012). Periodically, researchers may propose the use of very small quantities, however, these chemicals are not used to detonate or deflagrate, but rather are being studied for their chemical properties. These chemicals are handled and controlled in the same safe manner as other reactive chemicals used at SLAC.

For all pressure, cryogenic, and vacuum systems, design and construction specifications are required to call for compliance with the applicable ASME boiler, pressure vessel, and piping codes and standards, as well as applicable Uniform Mechanical Code and Uniform Building Code requirements. The Pressure Systems Safety Manager reviews this. In-service inspection, repair, maintenance, and pressure tests of the pressure systems are performed in accordance with ESH Manual Chapter 14, “Pressure Systems”.

A SLAC Pressure Systems Working Group has been convened, comprised of Mechanical Engineers and scientists designated by the ALDs to represent the various directorates at the site. The working group is chaired by one of the members for a minimum one year term. This working group meets regularly to advise the Program Manager and to assist as subject matter experts in the design review of pressure systems.

SLAC has adopted the latest editions of the following codes and standards for the pressure systems safety program: ASME Boiler and Pressure Vessel Code, ASME Piping Code, 29 CFR Part 1910, Occupational Safety and Health Standards, and other national standards as listed in ESH Manual Chapter 14, “Pressure Systems”. Additionally, an equivalency of certain European codes contained in the European Union Pressure Equipment Directive (PED/97/23/EC) to the ASME Boiler and Pressure Vessel Code and ASME Process Piping Code if it can be shown to have an equal level of safety.4

REFERENCES:
- ESH Manual Chapter 14, “Pressure Systems”

4 Reference the concurrence letter from DOE/SSO to SLAC dated 04/25/2016; see Section 13 for more information.
12.5 Firearms Safety (Not Applicable at SLAC) [851-App. A §5]

There are no activities involving the use of firearms. Firearms are expressly forbidden on any SLAC work location. SLAC’s Site Security Plan specifies that the Security force only “observe and report”. SLAC relies on the San Mateo County Sheriff Department as the lead law enforcement agency. Mutual Aid support, if required, is provided through the Menlo Park Police Department, Stanford University Department of Public Safety, and the California Highway Patrol.

12.6 Industrial Hygiene [851-App. A §6]

The SLAC Industrial Hygiene Program is managed and implemented by the Project Safety Department Head. The program is designed to protect workers from harmful exposures to hazardous materials, carcinogens, noise, heat and cold stress, and non-ionizing radiation (such as ultraviolet, visible, infrared, radiofrequency, microwave, and static magnetic fields). Note: ionizing radiation is not covered under the scope of this Plan, but is managed by the Radiation Protection Department in accordance with 10 CFR 835 and other applicable DOE Directives. Lasers are covered under this Plan but not by the Industrial Hygiene Program.

The Industrial Hygiene Program is responsible for policy and procedure development and implementation, and the performance of workplace hazard evaluations due to exposure to chemical and physical agents (except ionizing radiation and lasers, which are managed by the Radiation Protection Department).

REFERENCES:
- SLAC Industrial Hygiene Program

12.7 Biological Safety [851-App. A §7]

There is minimal work with biohazardous materials at SLAC, and all such work is limited to Biological Safety Level (BSL) 2 and below. All planned work with biohazardous materials is reviewed by ESH Coordinators or the SLAC Biosafety Program Manager and the more hazardous work is reviewed and approved by Stanford University's Administrative Panel on Biosafety (APB) to determine if SLAC's safety programs, facilities, and systems can safely manage the planned work.

SLAC does not currently conduct any work with “select agents” as listed in 42 CFR 73, 7 CFR 331 and 9 CFR 121, or the Health and Human Services and United States Department of Agriculture Select Agents and Toxins List. Should the potential use of select agents come up in the future, it will go through a thorough review.

Work with biohazardous material is conducted in a safe, environmentally sound, and compliant manner using the principles and functions of ISEMS and work planning and control.

REFERENCES:
- SLAC Biological Safety Program (internal access only)
- Stanford University Biosafety Manual
- Centers for Disease Control and Prevention and National Institutes of Health (CDC-NIH), Biosafety in Microbiological and Biomedical Laboratories (BMBL) (Fifth Edition, 2009)

12.8 Occupational Medicine [851-App. A §8]

The SLAC Occupational Health Center (OHC) provides comprehensive occupational medical services to SLAC employees and is administered under contract with Stanford University Environmental Health and Safety. OHC manages work-related injury and illness care for Stanford University (SU) employees on payroll at SLAC and provides first-aid assessments for subcontractors and visitors. OHC performs medical examinations required as part of mandated surveillance programs, conducts fitness for duty and return-to-work evaluations, offers post-offer, periodic, and exit health evaluations, provides first-aid consultations regarding non-occupational health conditions, and
contributes to health promotion through its Wellness Program. Additionally, the SLAC OHC responds to emergencies for SLAC visitors, subcontractors, and DOE employees on-site.

SLAC OHC is managed by a physician board-certified in occupational medicine and is staffed by a certified occupational health nurse practitioner, one medical assistant, and an ergonomics specialist. Staff members work collaboratively with SLAC ESH and HR, Stanford University health and safety leadership, disability and risk management, and SLAC and SU campus wellness representatives to meet the needs of applicable federal and state laws and standards governing occupational health and safety of employees.

In compliance with 10 CFR 851, SLAC requires that all subcontractors who have employees working on-site for at least thirty 8-hour days in a 12-month period, or who are enrolled for any length of time in a medical or exposure-monitoring program required by federal, state or local regulations, be included in a comprehensive Occupational Medical Program. SLAC informs subcontractors of these requirements and requires a signed acknowledgment by subcontractors covered by the scope of the Rule that attests that they will be able to provide such coverage for their employees working at SLAC. Although SLAC’s OHC is available to provide emergency medical care to subcontractors in the event of an on-site injury, the subcontractor will be responsible for addressing appropriate medical care and surveillance under the other elements of this requirement.

REFERENCES:

- SLAC Occupational Health Center

12.8.1 Role of Occupational Health Center

The OHC provides support to employees, managers, and safety and health specialists to help ensure that SLAC is a safe and healthy workplace. The on-site clinicians regularly participate in worker safety and health team meetings and committees when appropriate, visit work areas to perform health hazard evaluations, and work with incident investigations teams to address the medical aspects of injury prevention while evaluating job conditions and issues relating to workers’ health. The OHC participates in new employee orientation and periodic SLAC safety fairs, collaborates with Stanford University’s Department of Environmental Health and Safety in support of the ergonomics program, including performance of workstation ergonomic evaluations, and assists in medical and programmatic oversight for the Arrillaga Recreation Center at SLAC, coordinating wellness initiatives with Stanford campus and Kaiser Permanente.

12.8.2 Injury and Illness

The OHC provides diagnostic examinations to evaluate injuries and illnesses to determine work-relatedness, apply appropriate medical restrictions, and refer for definitive care, as appropriate. The OHC monitors ill and injured workers to facilitate rehabilitation and safe return-to-work, interfacing regularly with HR and ESH to address modified work availability and minimize the lost productivity and financial costs associated with lost time claims.

SLAC requires employees who incur any work-related injury or illness to report the injury to their supervisor and seek medical evaluation with the OHC (or their pre-designated provider) within 24 hours. Those employees who return to work after one full day or more of lost time due to a work-related illness or injury are required to report to the OHC for an evaluation of their condition and ability to resume customary work. Employees who are absent due to an injury or illness that is not work-related and that lasts for more than 5 consecutive workdays are also required to obtain clearance with OHC prior to return to work. The Stanford/SLAC policy on sick leave requires an employee to apply for disability for any absence greater than 5 days (Administrative Guide Memo 2.1.7). In such cases, the employee or their supervisor is expected to notify SLAC’s disability vendor of any absence greater than 5 days. As a backup measure, Stanford University Disability and Leave Services also notifies the vendor if an employee reports being off work due to injury or illness for more than 40 hours, with the subsequent acknowledgement email distribution copied to the OHC for monitoring.
12.8.3 Medical Evaluations

In order to ensure that an employee meets specific physical, medical, and psychological requirements for a given work assignment, the OHC provides hazard-based medical monitoring and qualifications-based medical certification examinations at frequencies required by standards and regulations, and when recommended by SLAC’s Medical Director. Determination of the need for inclusion in regulatory-based medical surveillance programs is performed in conjunction with appropriate industrial hygiene experts. Currently, the following hazard-based medical surveillance programs are provided as required for employees with exposures to the following:

- Lead operations
- Beryllium operations
- Plating operations
- Laser operations
- Welding operations
- Noise/Hearing Conservation areas
- Hazardous Waste Operations
- Crane Operator
- Respiratory Protection
- DMV Commercial Driver Exams
- Bloodborne Pathogens and EMT
- Nanoparticle

12.8.4 Health Information Management

Complete medical records are maintained for employees from the time of their first physical examination. These records are confidential to the extent provided by law and remain in the custody and control of the OHC. Information from an employee’s health records may be disclosed only as required by law or if an employee provides written consent for release of information. Records are retained indefinitely. The OHC has implemented an Electronic Medical Records (EMR) management system.

Employee Assistance Programs are provided through the Stanford Faculty Staff Help Center and the Stanford Health Improvement Programs (HIP) – independent organizations run and controlled by Stanford University. There are some links between SLAC and those programs: SLAC’s Medical Director sits on the Faculty Staff Help Center Advisory Board, with the Help Center coordinating their services at SLAC through the OHC. The HIP Program also offers classes at SLAC and coordinates through the OHC. The Help Center offers counseling, classes and groups on substance abuse. Entry into any actual programs is treated as an employee relations issue and is managed by the Employee Relations staff.

The Traffic and Vehicular Safety Program at SLAC complies fully with the requirements in 10 CFR 851 and, notwithstanding the fact that SLAC roads are private rather than public roads, voluntarily conforms to California Department of Motor Vehicles (DMV) laws and regulations. This includes uniform traffic and pedestrian control devices and signage, speed limits, seat belt use, and other safety devices as required. All SLAC employees undergo basic vehicle safety training that has been incorporated into the Environmental Safety and Health Orientation and Construction Safety Orientation. Violations of traffic and vehicular safety requirements can result in further training, loss of driving privileges, or other disciplinary action, up to and including termination of employment.
12.10 Electrical Safety [851-App. A §10]

SLAC has an established, comprehensive Electrical Safety Program that complies with 29 CFR 1910 (Subpart S), 29 CFR 1926 (Subpart K), NFPA 70, and NFPA 70E. Only trained and qualified workers are authorized to operate and work on SLAC electrical equipment and circuits.

ESH Manual Chapter 8, “Electrical Safety”, primarily implements the program. General requirements for all SLAC work involving the use of electrical equipment and systems include

- Application of engineering controls, administrative controls, safe work practices, and PPE
- Electrical safety considerations
- Energized electrical work requirements
- Qualifying and authorizing personnel

In addition to ESH Manual Chapter 8, “Electrical Safety”, other supporting programs include Penetration Safety (ESH Manual Chapter 44) and Control of Hazardous Energy (Lockout/Tagout) (ESH Manual Chapter 51).

To ensure compliance with OSHA and National Electrical Code requirements for equipment safety, electrical equipment must be listed or labeled by a nationally recognized testing laboratory (NRTL) or be subjected to inspection and approval under SLAC’s Electrical Equipment Inspection Program (EEIP) prior to use. For legacy equipment that was in service prior to implementation of the EEIP program, SLAC has developed legacy equipment inspection plans. Implementation of the inspection plans is in progress. This program is managed by a qualified and experienced electrical safety professional.

References:
- ESH Manual Chapter 8, “Electrical Safety”
- ESH Manual Chapter 44, “Penetration Safety”

The SLAC Nanomaterial Safety Plan complies with the SSO approved SCP for the Department of Energy Order 456.1A, “The Safe Handling of Unbound Engineered Nanoparticles”.

The plan, which applies wherever nanomaterials are used at SLAC, follows a graded approach based on the inherent hazard of the material form. The hazard level assignment is as follows:

- Low-hazard level – Bound or fixed nanostructures
 - Solid materials with imbedded nanostructures
 - Solid nanomaterials with nanostructures fixed to the material’s surface
- Medium-hazard level – Nanoparticles suspended in liquids
- High-hazard level – Dry, dispersible nanoparticles, and nanoparticle agglomerates/aggregates

The assigned hazard level determines the extent of required controls, review, and approval. Proposals for work with low-hazard level and medium-hazard level nanomaterials will be reviewed and approved by the division safety coordinator. Such work will follow approved standard operating procedures. Work plans for high-hazard level nanomaterials are approved by the Nanomaterials Program Manager or a directorate approved business process that has been vetted by the Nanomaterials Program Manager.

References:
- SLAC Nanomaterial Safety Plan
12.12 Workplace Violence Prevention (Reserved) [851-App. A §12]
13 Variances, Code of Record, and Equivalencies

Only the Under Secretary may grant a variance from a 10 CFR 851 requirement, after receiving the recommendation of the DOE Associate Under Secretary for the Office of Environment, Health, Safety and Security. The procedure for obtaining such a variance is described in Subpart D of the Rule. The DOE SLAC Site Office (SSO) will be consulted prior to filing a formal variance request to gain a preliminary opinion of the likelihood the request will be granted and what supporting material would be needed.

When operating conditions require local alternative approaches to achieving equivalent safe conditions as those stipulated in codes and standards, the flexibility provisions (“Code of Record” and “Equivalencies”) contained in the codes and standards referenced in Section 9 of this Program may be pursued. The SLAC authority having jurisdiction (AHJ) for a particular area of expertise is responsible for evaluating facilities for determination of code of record applicability and for evaluating and granting equivalencies.

The SLAC AHJs are as follows:

- The SLAC Electrical Safety Officer serves as the AHJ for electrical installations and electrical safe work practices compliance under 29 CFR 1910, Subpart S, NFPA 70, “National Electrical Code”, and NFPA 70E, “Standard for Electrical Safety in the Workplace”.
- The SLAC Fire Marshal, along with his or her authorized representatives, serves as the AHJ in the enforcement and application of the SLAC fire prevention and protection policy.

Additional equivalencies may be granted by the DOE Head of Field Element in accordance with the Contract. These will be documented in the WSHP and/or the ESH Manual.

Prior to May 2007 (i.e., implementation of 10 CFR 851) several fire/building code equivalencies were approved through the SSO. All construction and operation has been in accordance with the Building and Fire Code, including the use of approved alternative materials and methods. Construction of facilities is done under the code of record established at the outset of facility design. Code of record information for a specific building construction project is most easily accessible from the ESH Building Inspection Office project review system for buildings built or renovated since 2007. For buildings built or renovated prior to 2007, code of record information is typically found in the project drawings or specifications kept in the SLAC Engineering Document Archive (SEDA) system maintained by SLAC Engineering Documentation Services.

Additionally, subsequent to the promulgation of 10 CFR 851, two equivalencies were granted by the SSO to SLAC:

- An equivalency to address the use of a rolling horizontal fire shutter across a multi-story opening. The 2010 Building Code of Record required use of an NFPA standard that addressed only manual swinging hatchways and did not include rolling shutters in its scope. SSO AHJ concurrence was dated 4/27/2015.

REFERENCES:

- External Requirements Database
- SLAC CDMS Published Code Alternatives
14 Enforcement

The Rule authorizes the Secretary of Energy to issue citations and civil monetary penalties to contractors indemnified by the Price-Anderson Amendments Act (PAAA), such as SLAC, for violations of DOE worker safety and health requirements. The Secretary’s enforcement authority is implemented through the DOE Office of Enterprise Assessments Office of Enforcement.

The DOE Worker Safety and Health Enforcement Program relies on contractors to voluntarily identify and report 10 CFR 851 noncompliances. Procedures for implementing the enforcement process are found in Subpart E of the Rule.

To administer the Program, the SLAC Laboratory Director appoints the following individuals:

- **NTS Coordinator**, who is in charge of the overall NTS Program
- **Alternate NTS Coordinator for 10 CFR 835**, who handles matters comprising possible violations of 10 CFR 835
- **Alternate NTS Coordinator for 10 CFR 851**, who handles matters comprising possible violations of 10 CFR 851

Since May 2007, SLAC has submitted the following worker safety and health noncompliance reports to the DOE NTS:

- NTS—SSO-SU-SLAC-2008-0001: Chemical Hygiene Plan and Training Not Current; status: corrective actions complete.
- NTS—SSO-SU-SLAC-2008-0002: Chemical Storage Deficiencies for Onsite Subcontractors; status: corrective actions complete.
- NTS—SSO-SU-SLAC-2008-0003: Inadequate Ground Fault Circuit Protection In Wet Lab; status: corrective actions complete.
- NTS—SSO-SU-SLAC-2008-0004: Confined Space Program Noncompliances; status: corrective actions complete.
- NTS—SSO-SU-SLAC-2008-0005: Fall Protection Program Noncompliances; status: corrective actions complete.
- NTS—SSO-SU-SLAC-2011-0002: Sub-Contractor Failure to Follow Work Plan on Compressor Line Causes Injury; status: corrective actions complete.

REFERENCES:
 - SLAC NTS Procedure (internal access only)
Appendix A: Glossary

ACGIH American Conference of Governmental Industrial Hygienists

Affected worker A worker who would be affected by the granting or denial of a variance, or any authorized representative of the worker, such as a collective bargaining agent.

AHJ authority having jurisdiction

ANSI American National Standards Institute

ASME American Society of Mechanical Engineers

ATS Action Tracking System

CFR Code of Federal Regulations

Closure facility A facility that is non-operational and is, or is expected to be, permanently closed and/or demolished, or title to which is expected to be transferred to another entity for reuse.

Closure facility hazard Refers only to facility-related conditions within a closure facility involving deviations from the technical requirements of 851.23 of the Rule that would require costly and extensive structural and engineering modifications to be in compliance. Closure facilities may have other hazards as well.

Contractor Any entity, including affiliated entities, such as a parent corporation, under contract with DOE, including a subcontractor at any tier, with responsibility for performing work at a DOE site in furtherance of a DOE mission. As stated in the Rule, all contractors and subcontractors at any tier are covered under this definition. The definition does not, however, apply to contractors or subcontractors that provide only “commercial items” as defined under the Federal Acquisition Regulations (FAR). Such contractors would not be performing work in furtherance of a DOE mission. [See definitions for employee and worker.]

Covered workplace A place at a DOE site where a contractor is responsible for performing work in furtherance of a DOE mission.

CVC California Vehicle Code

DOE The United States Department of Energy, including the National Nuclear Security Administration

DOE Director means a DOE Official to whom the Secretary assigns the authority to investigate the nature and extent of compliance with the requirements of this part.

DOE Enforcement Officer means a DOE official to whom the Director assigns the authority to investigate the nature and extent of compliance with the requirements of this part.

DOE site A DOE-owned or leased area or location or other area or location controlled by DOE where activities and operations are performed at one or more facilities or places by a contractor in furtherance of a DOE mission. This definition includes all sites where DOE exercises regulatory control under the Atomic Energy Act (AEA), even if DOE does not own or lease the site.

EAP Employee Assistance Program

Employee A person hired by the Stanford University to work at SLAC; includes career and indeterminate-time employees but not subcontract workers, students, or participating guests. See definitions for contractor.

ESH Environment, Safety, and Health. References to ESH in this document are limited to the protection of workers from workplace safety and health hazards. Environmental management and Radiation Protection are outside of the scope of the Program.
Facility management Includes individuals who have responsibility for maintaining the safety envelope for facilities.

FCM Field Construction Manager. Designated SLAC representative responsible for overseeing the execution of construction work to ensure the work is completed safely, according to SLAC requirements and contractual expectations.

Incorporate by reference Only the referenced document is incorporated by reference; references cited in the incorporated document are not included.

ISEMS Integrated Safety and Environmental Management System

LOTO lockout/tagout

NFPA National Fire Protection Association

NRTL nationally recognized testing laboratory

NTS DOE Noncompliance Tracking System

ORPS Occurrence Reporting and Processing System

OSHA U.S. Occupational Safety and Health Administration

PAAA Price-Anderson Amendments Act

POC Point of Contact. (see SLAC Point of Contact (POC))

Safety and health standard A standard that addresses a workplace hazard by establishing limits, requiring conditions, or prescribing the adoption or use of one or more practices, means, methods, operations, or processes, reasonably necessary or appropriate to provide safe and healthful workplaces.

SCP Site Compliance Plan based on DOE Contract DE-AC02-76SF00515, 10/01/2012 – 09/30/2017 revised 8/29/2016

SLAC SLAC National Accelerator Laboratory

SLAC POC SLAC Point of Contact. A term for the person assigned by the Purchasing Department, or the line organization sponsoring the service subcontractor who acts as the SLAC primary representative to the subcontractor. The POC ensures the work is completed safely, according to SLAC requirements and contractual expectations, and may be a project manager, a facilities technical services representative, a buyer/contract administrator, or an individual assigned by a project manager to oversee low and very low hazard subcontracting activities not requiring an FCM or SM.

SM Service Manager. Designated SLAC representative responsible for overseeing the execution of non-construction, high-hazard subcontractor work to ensure the work is completed safely, according to SLAC requirements and contractual expectations.

SME subject matter expert

SSO DOE SLAC Site Office

Subcontractor An individual or firm that provides skilled or unskilled labor, repair and maintenance services, technical professional support, job shop personnel, and so on. For purposes of this Program, this includes service and constructions subcontractors. This also includes any lower tiers of contractors hired by a subcontractor to assist with the execution of a specific contract.

User Users and similar non-employees are individual users, collaborators, students, visiting scholars, scientists, or researchers. These are not SLAC employees or subcontractors (see definition of Contractor).
Appendix B:
List of Equivalencies and Other Agreements Pre-dating Promulgation of the Rule

There are no formal equivalencies that have been submitted to DOE.