NLC Global Controls Cost Reductions: Network

S. Clark, M. Crane, M. Ortega, H. Shoae
Ideas

• Eliminate redundant fiber plant
 – $2.5M Reduced capacity for future expansion

• Eliminate redundant router(s)
 – $74K normal traffic and 120 Hz on one cable. No failover capability.

• Service more sectors with a single router
 – $700K (1 per 12 IOC instead of 8) Throughput, reliability?

• Reduce IOC count
 – $5M (1500 reduced to 1000) Reliability of overloaded IOC?
Ideas Revisited

• Eliminate redundant fiber plant
 – only 4 fibers to every third sector for “open” design
 – TRIO requires 2 (or 4) fibers to every TRIO box (how many?)
 – Sector-to-Sector fiber plant still required

• Eliminate redundant switches(s)
 – OK if switching fabric bandwidth can handle full load
 – add hot swap power supplies and extra controller for reliability
 • 22 * $50K = $1.1 M vs. $1.54 M for 44 redundant switches
Distributed Backbone

Three 226 meter linac sectors or three 166 meter beam delivery sections

Un-terminated fiber for expansion

Global Fiber Plant

Segment FODUs

Segment Switches in Alcove

POP FODUs

POP Switches

Numbers are required fiber count (no spares)
Distributed Backbone

Main fiber plant:
- 44 total cables for future (?)
- 22 total terminated cables

Core -a
Core -b

Central Controls Backbone
MPG
MPS
FBK
Servers, Workstations, World, Etc.

e+
SEG a
SEG b
POP
9
POP
n
n
Sector Devices
Sector Devices

11 sets of Redundant Segment Switches per 1/2 machine

e-
SEG a
SEG b
POP
9
POP
n
n
Sector Devices
Sector Devices

9 sets of Point of Presence Switches to one Segment Switch
• Remember: there is a point to point fiber link between every remote TRIO assembly and it’s MCC located IOC.
Ideas Revisited

- Service more sectors with a single switch
 - 9 sectors is stretching Gigabit Ethernet already
 - Beam Delivery layout was selected by power and environment

- Reduce IOC count
 - double count of LLRF crates (IOCs) is 230 or about $2.35M

- More Information Required:
 - Actual TRIO costs
 - Closer study of central area server hardware, counts, and costs
More Sectors per Switch

100baseFX - now
1000baseFX - future

POP-a
fiber to
Segment
Switch

POP-b
fiber to
Segment
Switch

POP switch in Alcove
22 inputs, 2 outputs

Point to Point
fiber or copper
runs for
10/100 Ethernet

High QoS port for
realtime latencies

Devices

Video
PPS/other

900MHz
or I/R

Terminal
server

X-WIN

Data
Store

Diag
Box

RF
IOC

Pulsed
IOC
Distributed Backbone

e+ e-

Central Controls

Machine wide Segments
NLC Network Device Scale

- See additional slide for $2.35M double costing

- 380 Pulsed Control System IOCs (282 linac + 98 other)
- 192 Slow Control System IOCs
 - Actual IOC count depends on exact local I/O counts
- 828 Linac RF IOCs (pulsed) (oops! Used 46 RF sectors!)
- 60 Special purpose IOCs (some pulsed)
 - Damping rings, diagnostic sections, Master Pattern Generator, Feedback, Machine Protection System

- Total ≈ 1500 IOCs
- More detailed method comes up with 1200 non-RF IOCs
 - About 10 per sector and 2 in each of the 100 other areas
POP Switch Costs

POP Switch (189)
10/100bTX: $4280 each = $809K
100bFX: $10,280 each = $1.9 million

- WS-C2924MF-XL Catalyst 2924MF XL, 12 port 100bFX Port Switch with two module slots $8000
- WS-C2924M-XL-EN Catalyst 2924M XL, 24 port 10/100 Switch with two modules slots (Enterprise Edition) $4000
- WS-C2924M-XL- Catalyst 2924M XL, 24 port 10/100 Switch with two modules slots $3000
- WS-X2922-XL-V Catalyst 2900 XL 2-port 100bFX Switch Uplink Module. ISL/802.1Q capable- MTBF 602,722 hours $1000
- WS-X29??-XL-V Catalyst 2900 XL 1-port 1000bFX Switch Uplink Module. ISL/802.1Q capable $1000
- CON-SNT-PKG4 Catalyst 2900 Series XL SMARTnet Maintenance $280

- 3.46 x 17.5 x 12 in - Operating temperature: 32 to 122° F (0 to 50° C)
- MTBF 188,350 hours (21 years)
- Power consumption (with modules): 170W maximum; 580 BTU per hour

Segment Switch Costs

- **Segment Switch (44)**
 - Summary: 44 @ $35030 each = $1.54 million
 - WS-C5505 - Switch mainframe $1500
 - WS-C5008B - Catalyst 5000/5505 AC Power Supply $1250
 - WS-X5530-E1 - 5002/5000/5500 Sup Engine III w/out Uplink Module $14000
 - WS-U5536-GELX -2-port 1000Base-LX SMF Uplink Mod For Supvr Engine III $6000
 - WS-X5201R -12-port 100bFX Backbone Switching Module $10000
 - WS-C5599 - Catalyst 5500 Rack Mount Kit $80
 - CON-SNT-PKG13 - Catalyst 5000 and 5505 SMARTnet Maintenance $2200
 - No cost added here for redundant power supplies or redundant supervisor modules
 - 1000BASE-LX/LH 10km - 9/10um Singlemode
 - Operating temperature: 32 to 104° F (0 to 40° C) - 10.4 x 17.21 x 18.14 in
 - 8.0A @ 100 VAC 60 Hz - Power consumption: 376 watts
NLC - The Next Linear Collider Project

Core Switch Costs

- Core Switch (2)
 - Summary: 2 @ $72,000 each + switch fabric upgrade $? + ZX 10Km (24*2K? = 48K) + extra interfaces $? = $288K
 - WS-C6509 Catalyst 6509 chassis (9-slot) (only in bundle with P/S and supervisor) $24,000
 - WS-CAC1300W/2 (spare) $4000
 - WS-X6K-SUP1-2GE Supervisor Engine 1, dual-port 1000BaseX uplinks spare $10,000
 - WS-X6408-GBIC 8-port Gigabit Ethernet module (16 port Q2/99) $10,000
 - WS-G5486 GBIC adapter Long wavelength/long haul 1000BaseLX/LH 10Km $1500
 - WS-G5487 GBIC adapter 1000BaseZX 70Km (availability not yet set 3/99) wag = $2000
 - 10 Km minimum with -8 db pads at either end
 - maximum of 12 ZX GBICs are supported in a switch chassis (and no redundant power)
 - WS-X6248-RJ-45 48-port 10/100 RJ-45 $13,000
 - WS-X6224-100FX-MT 24-port 100FX Multimode MT-RJ $15,000
 - WS-G5484 GBIC adapter Shortwave 1000BaseSX 200 to 550 meters $500
 - WS-F6020 Layer 2 Switching Feature Card - Software SFC6K-SUP-5.1.1-CSX?
 - Supports 128 GE ports per switch using all eight module slots (plus 2 on supervisor)
 - 25.2 x 17.2 x 18.1 in. - 1800W - System heat dissipation 6140 Btus/hr
 - http://www.cisco.com/univercd/cc/td/doc/product/lan/cat6000/6000hw/supereng/install/02instal.htm
 - http://www.cisco.com/univercd/cc/td/doc/product/lan/cat6000/6000hw/supereng/install/01oview.htm