Scaling Issues: How to Make EPICS Fit NLC

EPICS Collaboration Meeting, SLAC 1999

Size
Network
Issues
NLC Control System Size

• **How big is it?**
 - 10 Km of Linac + 5 Km of Beam Delivery *2
 - 18 Km of fiber optic cable from Central Controls to furthest node
 • $\leq 200\mu$S maximum round trip propagation delay!
 - 192 major clusters of control system devices
 - Pulse train of 95 bunches every 8 ms (120Hz)
 - 1000 PV per IOC = 1.5 million; more like 3 to 5 million
 - Some users are requesting “all the data all the time”
EPICS Hardware Distribution

Workstations:
- Sun
- Hp
- PC

I/O Controllers
- VME/VXI/PCI

Remote I/O and Signal Conditioning
- CAN-Bus, Industry Pack
- VME, VXI, PCI, ISA
- CAMAC, GPIB
- Profibus, Bitbus, Serial,
 Allen-Bradley, Modbus,
 IEEE 1394 (Firewire)
NLC Network Node Counts

- 380 Pulsed Control System IOCs (282 linac + 98 other)
- 192 Slow Control System IOCs
 - Actual IOC count depends on exact local I/O counts
- 828 Linac RF IOCs (pulsed)
- 60 Special purpose IOCs (some pulsed)
 - Damping rings, diagnostic sections, Master Pattern Generator, Feedback, Machine Protection System
- Total \(\cong 1500\) IOCs
- 1000 support nodes in the alcoves
- 300 servers and workstations in the Central Controls area
- Grand total \(\cong 2800\) total nodes in this network (for now)
Global Network

- Global network to provide alcove connectivity
 - Model uses Gigabit Ethernet as the physical layer protocol
 - Scaleable, fault tolerant, commercial network
 - TCP/IP based protocols to allow network segmentation
 - Backbone is 100% optical fiber, node access is mixed fiber/copper
 - Redundant systems are used for reliability
 - Long fiber runs from central campus area to every third sector in main linac for future expansion capabilities
 - Integrated network monitoring and management tools
Point of Presence Diagram

POP-a
fiber to
Segment
Switch

POP-b
fiber to
Segment
Switch

POP switch in Alcove
22 inputs, 2 outputs

100baseFX - now
1000baseFX - future

Point to Point
fiber or copper
runs for
10/100 Ethernet

High QoS port for
realtime latencies

Devices

Video
PPS/other

900MHz
or I/R

Terminal
server

X-WIN

Data
Store

Diag
Box

RF
IOC

Pulsed
IOC
Distributed Backbone cont.

Main fiber plant:
- 44 total cables for future (?)
- 22 total terminated cables

11 sets of Redundant Segment Switches per 1/2 machine

9 sets of Point of Presence Switches to one Segment Switch

Central Controls Backbone

MPG

MPS

FBK

Servers, Workstations, World, Etc.
NLC - The Next Linear Collider Project

Distributed Backbone

Machine wide Segments

Central Controls
Central Controls Area

- Core Switch - a Realtime / QoS Systems
- Core Switch - b Global Systems
- Gigabit EtherChannel
- 1000baseSX
- Isolation Router
- Workgroup Switch
- To Segment Switches via main fiber trunk

- Master Pattern Generator
- Fast Feedback Farm
- Machine Protection Farm
- IOC Server Farm
- Office Computing
- Development OPI + IOCs
- Development Workstations
- Development Server Farm
- Application Server Farm
- OPIs
- Displays
- Network Monitors
- Storage Area Network
- Firewall
- Storage Area Network
- Campus
- Fibre Channel

Mark Crane
5/25/99
Slide 9
Scale Issues

• Network
 – IOC booting and initialization
 • VxWorks image in local flash memory
 • Multiple configuration servers
 – Broadcasts (ARP, routing, beacons, other)
 • Segment using routers and VLANs (if OK by QoS)
 – Need Quality of Service (QoS) for realtime IP based transfers
 • QoS guarantees as traffic rate increases

• Software
 – Channel Access location services
 • Channel Access name server or directory services such as DNS or Novel to provide server redundancy, coherency
 – EPICS gateways and application servers for multiple users
Scale cont.

• **Hard limits in an IOC**
 – Maximum number of connected clients (memory size?)
 – Maximum number of PVs in a single IOC
 – VxWorks limits such as the max number of TCP sockets

• **Network monitoring and diagnostics**
 – SNMP added to IOC for integration into enterprise monitoring

• **Bulk data movement**
 – Compression and streaming techniques
 – Local data storage until it’s moved to central area
Summary

- It’s BIG!
- New opportunities abound!
- CA hooks are very important
- Need to know what has worked and what hasn’t
- Need to identify big ticket items we might have missed