Strip Upgrades and Trigger

July 17, 2009
Carl Haber
LBNL
For the ATLAS Strip Upgrade Collaborations
Introduction

• In current ATLAS, outside pixels have long (12 cm) strip layers (SCT) and straw tubes (TRT).
• This system is expected to operate until the Phase 2 period.
• For Phase 2 (install in 2019) the SCT+TRT should be replaced with an all-silicon system
 – Increased granularity (up to 400 evts/crossing)
 – Increased radiation resistance
 – Control mass
 – Possible trigger capability
• The strip upgrade is an active R&D and prototyping project
 – Considerable development in across ATLAS, extending to 2012
 – Many workshops, regular working group meetings
 – R&D management structure in place
 – Many baseline electrical and mechanical aspects have been selected
 – LOI organized, submit in 5/2010, TP in 2012
Now and Then

Present ATLAS SCT 61 m²
~ 4K modules, precision mounted with~ 5 μm internal build required
• Modules rigid and self supporting
• Heat flows across the plane
• Individual power, DAQ to each module
• Significant fault tolerance
Phase 2: ~20K modules + services!
Current Phase 2 ID Layout

- 5 double sided barrel layers
 - Inner layers: 3 of 2.5 cm = short strips
 - Outer layers 2 of 10 cm = long strips
- 5 double sided disk layers
- Basic substructure is a “stave” or “petal” being a highly integrated electrical/mechanical/thermal element holding many “modules”
- A number of new technical challenges…due to radiation, scale, performance
Barrel Staves

~ 1.2 meter

Bus cable
Hybrids
Carbon honeycomb or foam
Coolant tube structure
Readout IC’s
Carbon fiber facing

SLAC LHC Wkshp.
Forward Petals

Valencia

• Challenge in forward region is to limit the multiplicity of sensor and module designs and to efficiently use TTC and power distribution resources
Staves and Petals

- Staves front load much of the tracker assembly and integration
 - Embed in a simple insertion scheme
- Staves offer an efficient cooling scheme due to embedded coolant
- Staves are a minimal mass solution
- Staves provide a natural structure for local triggering doublets
- While not exclusive to the stave, propose a highly multiplexed TTC and efficient power distribution scheme
 - Multi-drop clocks, addressing, and commands
 - Alternative powering schemes including serial and DC-DC conversion
 - A way to dramatically reduce the electrical services
Enabling Technologies

- All of these are areas of active development in the collaboration
- Sensors: enhanced radiation resistance, p bulk
- Front End ASICs designed to SLHC specifications
 - Low noise to complement CCE loss due to radiation
 - Fast data readout
 - Integrated power regulation
- Hybrids: low mass, high density flex laminates
- Modules: hybrids glued to sensor, proximity
- Power and signal distribution:
 - Embedded bus/shields,
 - Multi-drop
 - Alternative powering
- Mechanical support and cooling: composites, large ΔT
- Assembly and inspection methods: precision fixturing, robots
- DAQ: high speed data I/O for multi-modules in parallel
Upgrade R&D Organization

Proposed Organogram for ID strips in Lol/Stave09 period

ID

- Strips Abe Seiden
 Dep: Phil Allport

 - Sensors: Nobu Unno
 - ASICS: Francis Anghinolfi

 Kids

 - Pixels

 - Modules
 - Ulj Parzefall (F)
 Dep: Tony Affolder (B)
 - Barrel Staves
 D. Lynn
 Dep. ?
 - Endcap Staves
 Carlos Lacasta
 Dep. ?

 - Stave09/Electrical
 Carl Haber
 Dep: Dave Robinson

 - Electrical Interfaces
 D. Ferrere?
 Dep. ?

Across ID

- Electronics
 Philippe Farhiouat

- Thermal Management
 Georg Viehauser

- Powering
 Marc Weber

- Optolinks
 Clgdem Iseever/KK Gan

- Engineering
 Andrea Catinacchio

- Services PP2 Out
 Sigl Wenig

- Layout
 Leo Rossii?

- Simulation
 Jeff Tseung

- Radiation and shielding
 Ian Dawson

- DCS
 Didier Ferrere

Thermo-mechanical design
Interface to ID-services
Insertion-mechanics
Prototyping

Thermo-mechanical design
Interface to ID-services
Insertion-mechanics
Prototyping

Set up central Facility
Bus Cable
Test-DAQ
Powering
HV
Cooling
DCS

DAQ
DCS
Off-detector Interface to electrical and optical services

19 June 2009
Large Area P-type Sensors

- Because of advantages after heavy irradiation from collecting electrons on n+ implants, the detectors at the LHC (ATLAS and CMS Pixels and LHCb Vertex Locator) have all adopted the n+ in n- configuration for doses of $5 \times 10^{14} \text{n}_{eq}/\text{cm}^2$
- Requires 2-sided lithography
- Starting with a p-type substrate offers the advantages of single-sided processing while keeping n+-side read-out
- Processing Costs (~50% cheaper).
- Greater potential choice of suppliers.
- High fields always on the same side.
- Easy of handling during testing.
- No delicate back-side implanted structures.
- Series of full size and miniature “ATLAS07” prototypes have been made with various isolation structures.
ATLAS07 Mini’s: Proton Irradiations

- Irradiations performed to 2.3, 6, \(1.3 \times 10^{14}\) \(n\) \(\text{cm}^{-2}\) with 70 MeV Proton

ATLAS07 perform as expected
- At 500 V, \(2.3 \times 10^{14}\) \(n_{\text{eq}}\) \(\text{cm}^{-2}\): 17-21 ke-
- At 500 V, \(6 \times 10^{14}\) \(n_{\text{eq}}\) \(\text{cm}^{-2}\): 16-19 ke-
- At 500 V, \(1.3 \times 10^{15}\) \(n_{\text{eq}}\) \(\text{cm}^{-2}\): 11-14 ke-

Reasonably good agreement between different sites, systems, analyses and measurement techniques

Measured noise of ABCN25 on module with Hamamatsu sensor and 20 chip hybrid of 650 e-
ATLAS Binary Strip Readout

- As with the present SCT, the upgrade will use a binary readout scheme. (Atlas Binary Chip)
- Register hits only
- SCT used DMILL BiCMOS technology, for upgrade move to DSM CMOS
- New development ABC-Next
- Clock FE pipeline at 40 MHz
- Clock data out of chips at 80 MHz but multiplex two data streams to 160 MHz.
- V1 in-hand and operating

![Diagram of occupancy, Vt_50, and V threshold vs. Charge injected]
ABC-Next Front End Development

| Front-End | Optimised for short strip but power tuning capability for long strips | 27mA/chip (tuneable) ✓
		750enc (2.5cm strips) Final S/N > 10 ✓
Back-End	Main change in DCL block to 80MHz	92-96mA/chip at 2.5V nominal
Powering	2 integrated shunt regulators schemes	Current limiting option to impose uniformity
Floor Plan	Width to allow direct bonding to sensors	
Data Buffering	Pipeline and derandomizer implemented	
Submission	June 2008 (IBM 0.25μm)	Delivered end October 08

Francis Anghinolfi
20 Chip Hybrid for Barrel Modules

SCT DAQ Read-out adapted for ABCnext by Cambridge, RAL, Liverpool

80MHz data rate (10 x ABCn)

Gain: 100mV/fC
Input Noise: ≤400 enc
Threshold variation before trimming: 5.5mV
after trimming: 1mV

A. Greenall
A. Affolder
Liverpool

- Gain and Input noise show very little change.
- Data/token passing works at 80MHz.
- Tested using Front-end regulator enabled.
Alternative Powering Schemes

- **DC-DC conversion** – High voltage in, step down to 2V and 4A, most likely would use a multi-step approach
 - Under study – buck conversion with COTS and custom parts
 - Charge pump ASICs
 - But still needs detailed noise and interference studies
- **Serial Power** – recycle the current
 - Detailed proof-of-principle using SCT generation components
 - Regulators included in ABC-Next
 - Monitoring, control, and bypass circuits are under development and will be included in upcoming prototype staves

Yale/RAL/BNL/CERN
Stave Hybrid

- 20 chip hybrid for stave (Liverpool)
- Includes TTC interface for multidrop and AC coupling, addressing for multi-modules
- Buffer Control Chip (BCC) designed at SLAC, now in hand and functional
- Powering options board to allow tests of DC-DC and serial powering, bypass and monitoring on a stave (RAL, BNL, Yale)
Bus Cable Layout

- Al shield
- Data readout 1/hybrid
- Clock & Command lines
- Port Card (passive SMC)
- Serial current return
- HV distribution
- Serial current link
Early Test of Stave and Modules

- Test vehicle for electrical performance studies using SCT chips and COTS parts
 - Noise
 - Cross talk
 - Grounding, bias, and shielding
 - Signal propagation
- Module is serially powered, AC coupled data and control
- Good noise performance observed on stave, studies continue
- Tested with a range of substrates, thicknesses

![INPUT NOISE vs STRIP LENGTH](image)

<table>
<thead>
<tr>
<th>LENGTH (CM)</th>
<th>NOISE (ELECTRONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>15</td>
<td>1500</td>
</tr>
</tbody>
</table>

CC 200 um
BeO 200 um
Epolite FH 5153 50 – 75 um or alternative
First SLHC Short-strip Module Demonstrator

- Both fully loaded 20 chip hybrids
- ABC-Next chips
- ATLAS07 p-type sensor
- One hybrid glued directly to silicon, one bridged over Al
- Good noise performance in either case, 650 e @ 2.5 cm
Glued Sensor Irradiation Studies

Irradiated to 1.5×10^{15} p cm$^{-2}$ at CERN (9.3×10^{14} n$_{eq}$ cm$^{-2}$)
No measurable effect of glue relative to similar irradiations

Using fit of clustered charge, efficiency at 500 V near 100% at threshold of 1 fC for 1×1 cm2. Would expect 0.75 fC needed for 2.5 cm strips.
Stave-DAQ: Multi-module System

SLAC board development

HSIO BOARD

s/w: UK, LBL
Prototype Stave Core Construction

BNL, Yale
LBNL
RAL
Oxford
Summary of Baseline Effort

- Well organized and active collaboration addressing a broad range of technical issues
- Significant early progress on all aspects – sensors, FEE, modules….
- Many details but no show-stoppers at present
- Major focus of next year will be a full scale ATLAS specific short strip stave “Stave-09”
- Build up technical base also at CERN over next year
- LOI preparations
- Uncertainties
 - Continued schedule shift
 - Need for track trigger…
Need for a L1 Trigger

- ATLAS (and CMS) do not presently use Inner Detector in the L1 trigger
- Not considered technically feasible in past
- L1 track trigger creates new primitives (p_T tagged track vectors) which combined with μ, e, E_T, etc., offer new physics tools
- A high luminosity this could be crucial
 - Flattening of muon trigger above 20 GeV
 - Addition effect of cavern backgrounds could introduce excessive fake rates in the muon trigger, false triggers are flat in p_T
- Enabling technologies
 - FE chips, high density interconnects, data transmission, trigger processors
L1 Trigger Effect

- All four recent ATLAS workshops had significant input on triggers
- Muons:
 - The rate flattens off above ~20 GeV, similar to CMS
 - Mainly resolution effect, 20 GeV ~ ∞ but also low BL² regions and other effects
 - Can look into muon solutions to improve this – certainly the LVL2 and EF improve significantly so there is scope

![Single muon trigger](image)
Approaches

• ROI readout of ID for high-rate L0.5Calo/Muon trigger
 – E.g. 10 % at 400 kHz --> limited impact on average ID bandwidth
• Storing tracker data longer in FE at L1 and dropping if fast-clear given
 – Allows more time for L1Calo and L1 Muon combinations
• Coincidences for parallel strips a few mm apart
 – Silicon sensor pairs with local hit correlations,
 – A development of local intelligence within the tracker, data driven
 – Natural application of the stave and petal concepts
• ~17 mm gaseous detector (micromegas) at outer layers
 – Measure track stub
Sensor Pairs

For reasonable pitches, sensor separations, and momenta find ~7 bins
Local module output could be 3 bits : 7 bins + 1 sign
Technical Concept

Sensor ~10 x 10 cm
Fine pitch interconnect
Digital chip on hybrid
Bus cable
Analog chip on hybrid
Wrap around
digital chip
pre-amp disc
trigger
output
pipeline
n
n+1
Wrap around
Already similar to baseline stave…
Future Trigger Directions

• Track trigger working group convened by R. Brenner
• Ongoing simulation and performance studies underway
• Featured in dedicated sessions at Tracker Upgrade meetings
• ATLAS-CMS common discussions and efforts?
• Generic R&D on trigger concepts
• Hardware oriented workshop open to non-ATLAS as well
 – Jan 26-28, 2010 at Lawrence Berkeley National Lab