CMB Polarization Research Program

Chao-Lin Kuo, Sarah Church, John Fox, Sami Tantawi, Jeff Neilson

KIPAC/SLAC

Sept 13, 2010
The B-mode Science

- The energy scale of Inflation (amplitude of the gravitational waves)
- The absolute mass of neutrino (down to 0.03 eV for ideal exp.)
- The early evolution of dark energy

DOE Site Visit: Sept 13-14, 2010
Previous work

MMIC HEMT amplifier arrays (LDRD award 2008-10)
- Development of front-end detector technology, feeds and polarization splitters.
- Synergetic with SLAC expertise in RF/microwave technologies

BICEP/BICEP2/Keck (Bolometric)
- 90/150GHz
- 25/24 elements
- 2005-2008
- 150GHz
- 256 elements
- Taking data (analysis partly supported by O&E)
- 150GHz
- 256x3(5) elements
- Under construction (integration partly supported by O&E)

Collaboration with JPL, Caltech. Uses SLAC designed microwave filters and phase switches

State of the art 90-GHz amplifier module

DOE Site Visit: Sept 13-14, 2010
KIPAC has a strong heritage in the field – BICEP(100/150GHz), QUaD(100/150 GHz), QUIET-I(40/90GHz)

• KIPAC (campus funding) participated in QUIET (Co-I Church), building the 1.4m telescope, in BICEP (Co-I Kuo), and led the QUaD experiment (PI Church)
• BICEP provides the best limits on inflation energy. QUaD provides best limits to the lensing signal. QUIET-I (to be published) will provide similar sensitivity to the two.
• Great opportunities in (i) improving the limit on inflation (ii) exploiting lensing science
• The next experiments: large in scale, and/or technology intense – national lab involvement
Proposed SLAC role in QUIET: 32/44 GHz MMIC array development

• QUIET II -- search for gravitational waves produced by inflation (~10x sensitivity than QUIET-I)
 – This experiment was considered by PASAG under CMB research
 – University of Chicago directed (Winstein NSF PI).
 • US and international involvement, including KEK (Japan)
 • Proposal to NSF submitted 2009. No official word, but NSF is requesting more work to improve detector performance.
 – Proposed DOE role (Fermilab and SLAC) would be to provide the detectors (MMIC amplifier modules) and other RF parts, participate in data handling and analysis.

• Proposed SLAC (Tantawi, Church)
 – Develop improved Q-band (44 GHz) module using more sensitive HEMT amplifiers (JPL)
 – Develop Ka-band (32 GHz) module
 – Build Q-Band, Ka Band feeds and polarization splitters
 – Complements a Fermilab proposal to provide W-band hardware (90 GHz).
 – Builds on the previous LDRD effort to apply SLAC RF expertise to MMIC amplifiers for CMB research; funds were also used to collaborate with JPL, Fermilab on W-band module improvements for QUIET II
Proposed SLAC role in QUIET: 32/44 GHz MMIC array development

* Q-band (44 GHz) and Ka-band (30 GHz) are crucial frequencies for foreground removal from W-band (90 GHz) data

A 90 GHz prototype module (not QUIET design) for other CMB applications built by SLAC/campus in collaboration with JPL

A 90 GHz hybrid built by SLAC to test QUIET modules

Hardware and expertise already in place at SLAC to design, build and test prototype modules, feeds and polarization splitters

DOE Site Visit: Sept 13-14, 2010
Lensing Science with the POLAR Array
(Ten 2m-class QUIET-style telescopes; 100-220 GHz)

- Follow-up to SPTPOL (Argonne/U. Chicago; 2011); Complementary to QUIET-II
- Two surveys (i) DEEP for inflationary gravity wave (ii) WIDE survey for lensing science
- The Pathfinder experiment (POLAR-1) funded by the NSF (PI Kuo) – 2012 deployment
- Taking advantage of the RF/microwave/digital electronics expertise at SLAC
- 3 years of technology development, 3 years of construction – fielding ~ 2016

DOE Site Visit: Sept 13-14, 2010 7
Proposed POLAR Array Activities at SLAC

• Assessment of new detectors: Microwave Kinetic Inductance Detector (MKID) or Transition Edge Sensor integrated with MSQUID
• Assessment of novel focal plane architectures: Feedhorn and antenna design
• Development of High speed (GHz) frequency domain multiplexing
• Large aperture vacuum window/Infrared filtering development (frequency selective surfaces)

Frequency domain multiplexing electronics
Currently: 256 ch. per pair of cables/card, Goal = 1,000 ch.

Two possible focal plane technologies for POLAR: planar antenna (left) and feedhorn (right)
Manpower

- Previous work supported by LDRD, O&E/KIPAC
 - Senior:
 - Sarah Church (group leader: QUIETI/II, MMIC)
 - John Fox (digital electronics)
 - Jeff Neilson (RF/Microwave)
 - Chao-Lin Kuo (group leader: BICEP2/Keck/POLAR)
 - Sami Tantawi (group leader: RF/microwave)
 - Postdoc: R.Walter Ogburn (BICEP2/Keck)
 - Graduate Student: James Tolan (Keck)

- Issues
 - Schedule for HEMT testing is very dependent on FY 11 funding profile
 - SLAC personnel on HEMT program supported by LDRD that ended Sept 2010
 - Retention of expertise depends on FY11-FY12 funding