Interpretations on Performance Evaluation Process

D. MacFarlane

June 4th, 2009
Reasons for the change

• Establish outcome based objective-setting that complements the Lab Agenda
• Align supervisors’ objectives with Departmental, Directorate and Lab goals
• Reduce subjectivity of evaluation process
• Align scientific goals with Lab priorities and establish reasonable benchmarks for performance
Near-term and ongoing HEP programs

- Facilitate ongoing exploitation of the BABAR dataset
 - Continue contributing to physics output and execute D&D project
- Operate the LAT for Fermi GST, and continue to spearhead scientific discovery with this unique observatory
 - Support the operations, software development, and instrument support functions of the LAT, as performed by the ISOC
 - Maintain a vigorous LAT-based scientific analysis program at SLAC.
- Play a significant role in ATLAS & LHC accelerator commissioning, initial science analyses, & computing
- Maintain a world-class accelerator-science program
 - World-leading programs in beam physics theory, advanced computation, and accelerator design
- Maintain a crucial, enabling role in technology development for the ILC
 - L-band rf, electron source, final focus and IR design
Near-term and ongoing HEP programs

• Lead high-gradient X-band research in the US
 – Establish the fundamental limits to acceleration gradient and the optimal design of rf structures

• Maintain world-leading theoretical programs in particle physics and particle astrophysics and cosmology
Future HEP programs

- Bring LSST into development as a joint NSF-DOE project
 - Lead the design and development of the LSST camera, participate in data management, shepherd the involvement of the HEP community
- Play a major role in the upgrade of the ATLAS detector and the LHC
 - ATLAS Phase 1 and 2 upgrades: Tracking and TDAQ upgrades
 - Enhance ATLAS computing for physics exploitation of the LHC data
 - Extend LHC contributions machine contributions to include upgrade collimators, development of PS2 design, & LLRF & feedback improvements
- Construct and operate FACET for forefront experiments in beam-driven plasma wakefield acceleration
- Participate in JDEM construction, development, and science analyses
Future HEP programs

• Develop and construct a ton-scale version of EXO for the initial suite of mid-scale experiments at DUSEL
 – Complete operation and testing of EXO-200 and purse R&D and engineering for full-EXO
• Facilitate a significant US role in SuperB in Italy
 – Provide components from PEP-II to reduce the cost of SuperB construction
• Participate in Project-X R&D with contributions to rf power systems
• Perform state of the art experiments in laser dielectric acceleration
• Develop high power X-band rf sources to optimally exploit high gradient structures
• Initiate and maintain R&D efforts to enable longer-range future programs such as SiD, GeODM, and AGIS
Steps in annual review process

• Preparation:
 – Review performance on objectives
 – Review performance against position summary & amend for the next year
 – Invite employee to write a self evaluation
 – Complete the evaluation form and have it reviewed by next managerial level: opportunity for managers to refine SLAC agenda goals to the division and department level

• During the face-to-face review
 – Discuss performance of objectives and competencies
 – Discuss of progress and future needs in any development activities
 – Many groups operate with continuous feedback during the year, but discuss how well this is working and whether adjustments are needed
Setting objectives for scientists

• Designed characteristics of objectives:
 – Connected to Lab Agenda, Directorate, Division and ultimately Department goals
 – SMART: Specific, Measurable, Aggressive, Realistic and Time-bound
 – Focused on results and not activities

• For scientists whose primary role is research stretching over years this will be challenging
 – Some tasks can be defined by milestones and intermediate goals
 – However, it will be difficult to capture all expectations in this format and we do not want to overemphasize just quantifiable tasks
 – View this year’s exercise as an experiment, from which some best practices and interpretations will emerge
Which form to use?

- Available performance evaluation forms:
 - Supervisors & above (Objective setting required)
 - Staff (Objective setting optional)
 - Scientists (Objectives/Milestones required)
- For PPA:
 - Scientist is anyone in a physicist, experimental physicist, theoretical physicist or permanent physicist job classification
 - Everyone else should use the staff form unless you are a supervisor
 - Supervisor is an administrative supervisor: if you are only a functional supervisor, the scientist or staff form should be used as appropriate
 - Supervisors or line managers who are also scientists may want to use both the supervisor form for performance as a supervisor and the scientist form for performance as a scientist
 - Faculty scientific performance is being addressed separately, but faculty in line management roles should be evaluated on the supervisor form as well
What about the Job Summary?

- PPA paid significant attention this spring to development of job specific R2A2s
 - Captures some of the responsibilities also useful for the performance evaluation forms, but remains an important management tool
 - Recommend that the R2A2 be reviewed at performance review time and updated to describe an accurate job position summary for the coming year
Matrixed Employees

• Administrative Manager is responsible for conducting review

• Where employee is deployed during the review year to several other departments
 – Get feedback from those supervisors using the performance evaluation form
 – Aggregate feedback & complete

• When employee is matrixed to one department almost exclusively
 – Managers could jointly complete form & conduct review
 – No single approach