Exploring Ultrafast Excitations in Solids with Pulsed e-Beams

S. J. Gamble, M. H. Burkhardt SLAC, Stanford University Department of Applied Physics

Stanford Linear Accelerator Center H. C. Siegmann, J. Stöhr SLAC

A. Kashuba Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

R. Allenspach IBM Research Division, Zürich Research Laboratory

> S. S. P. Parkin IBM Almaden Research Center

Creation of large, ultrafast magnetic fields

C. H. Back et al., Science 285, 864 (1999)

Fields of SLAC e-beam

Experimental Geometry and Magnetic Field

Experimental Setup in FFTB

Torques on in-plane magnetization by beam field

Fast switching occurs when $H \perp M$

In-Plane Magnetization: Pattern development

- Magnetic field intensity is large
- Precisely known field size

With increasing field, deposited energy far exceeds macrospin approximation this energy is due to increased dissipation or spin wave excitation

Magnetization fractures under ultrafast field pulse excitation

Breakdown of the macro-spin approximation

Tudosa *et al.*, Nature **428**, 831 (2004) C. Stamm *et al.* Phys. Rev. Lett. **94**, 197603 (2005)

Experiments with Femtosecond Bunches

- reduce bunch length from ~5 ps to ~140 fs
- keep beam energy and charge fixed
- fields increased by factor of 35
- fields have unprecedented strength in materials science:

B-field: 60 Tesla

E-field: 20 GV/m

Experiments with femtosecond bunches

Observe two key new effects

5 ps

Ultra-short, ultra-strong field pulse shows no heating and damage

Pulse length: 4 ps

Pulse length: 140 fs

Peak field 35 times stronger

100 µm

10 µm

Surprising results:

- Magnetic pattern is severely distorted
- No apparent damage or heating by beam

Materials behave unexpected under extreme conditions !

The Weizsäcker-Williams Method of Virtual Photons

Electron beam is equivalent to ultra-strong half-cycle THz pulse

SLAC e-beam pulse versus THZ half-cycle pulse

SLAC THz pulses > 100 times stronger than previously produced pulses

Electronic distortion known to lead to magnetocrystalline anisotropy

Bonding fields are a few eV / atom

 $E \sim 10^{10} V / m = 1 V / Å$ rivals bonding fields

Electric Fields and Electronic Structure

potential gradient leads to breakup of conduction path no current flow due to field – not heating

Summary

- The breakdown of the macrospin approximation for fast field pulses limits the reliability of magnetic switching
- At ultrafast speeds (< 1 ps) new ill-understood phenomena exist one approaches timescales of fundamental interactions between electrons, lattice and spin
- Future experiments will explore the details using both **H** and **E** fields
- In the future, e-beam "pump"/ laser "probe" experiments are of interest, as well

For more, see: http://www-ssrl.slac.stanford.edu/stohr and J. Stöhr and H. C. Siegmann *Magnetism: From Fundamentals to Nanoscale Dynamics* 800+ page textbook (Springer, 2006)