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Creation of large, ultrafast magnetic fields
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C. H. Back et al., Science 285, 864 (1999)




Fields of SLAC e-beam

Fields in frame of charge Fields in frame of observer
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Experimental Geometry and Magnetic Field
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Experimental Setup in FFTB
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Torques on in-plane magnetization by beam field

Initial magnetization of sample
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In-Plane Magnetization: Pattern development

Reversals
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Rotation angles:
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» Magnetic field intensity is large

* Precisely known field size



Deposited Energy / in-plane K,

With increasing field, deposited energy far exceeds macrospin approximation

K, sin” (CNr,) /K,

Breakdown of the Macrospin Approximation
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this energy is due to increased dissipation or spin wave excitation



Magnetization fractures under ultrafast field pulse excitation

Macro-spin approximation Magnetization fracture
Easy uniform precession moment de-phasing
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Breakdown of the macro-spin approximation

Tudosa et al., Nature 428, 831 (2004)
C. Stamm et al. Phys. Rev. Lett. 94, 197603 (2005)



Experiments with Femtosecond Bunches

 reduce bunch length from ~5 ps to ~140 fs
» keep beam energy and charge fixed
» fields increased by factor of 35

» fields have unprecedented strength in materials science:

B-field: 60 Tesla

E-field: 20 GV/m




Experiments with femtosecond bunches
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Observe two key new effects






Ultra-short, ultra-strong field pulse shows no heating and damage

Pulse length: 4 ps

Pulse length: 140 fs

Peak field 35 times stronger




Surprising results:

« Magnetic pattern is severely distorted

 No apparent damage or heating by beam

Materials behave unexpected under extreme conditions !



The Weizsacker-Williams Method of Virtual Photons

Total number of virtual photons in beam spot

17
N107+
» =
£
$ 10"+
S8 % o 3 1x10" electrons
= — g &, =30 GeV
/fIE/\ 310" y=6x10*
________ AR\ ; a r=1ps
fa ‘ 'g 1011 Z THZ R = O-r
A , @ L b . =
( ( %\ 0 3 min — Ao
\ D, 09°
S
21074
© E
=) 5
E &7
> 1074

10® 10* 102 10° 10® 10* 10° 10®
Photon energy (eV)

Electron beam is equivalent to ultra-strong half-cycle THz pulse



SLAC e-beam pulse versus THZ half-cycle pulse
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SLAC THz pulses > 100 times stronger than previously produced pulses



Electronic distortion known to lead to magnetocrystalline anisotropy

Bonding fields are a few eV / atom

E~10°V/m=1V/A rivals bonding fields



Electric Fields and Electronic Structure

Potential of a regular linear lattice

Co bandwidth ~ 3eV

a E~1010v/m
Potential along E field direction a=0.25nm

potential gradient leads to breakup of conduction path
no current flow due to field — not heating



Summary

* The breakdown of the macrospin approximation for
fast field pulses limits the reliability of magnetic switching

At ultrafast speeds (< 1 ps) new ill-understood phenomena exist
one approaches timescales of fundamental interactions between
electrons, lattice and spin

» Future experiments will explore the details using both H and E fields

* In the future, e-beam “pump”/ laser “probe” experiments are of interest, as well

For more, see: http://www-ssrl.slac.stanford.edu/stohr
and
J. Stohr and H. C. Siegmann
Magnetism: From Fundamentals to Nanoscale Dynamics
800+ page textbook ( Springer, 2006 )



