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The ultrafast 
technology gap



Creation of large, ultrafast magnetic fields

Conventional method

- too slow

Ultrafast pulse – use electron accelerator

C. H. Back et al., Science 285, 864 (1999)
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Fields of SLAC e-beam



Experimental Geometry and Magnetic Field
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Experimental Setup in FFTB



Torques on in-plane magnetization by beam field
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Min. torque

Initial magnetization of sample

Fast switching occurs when H M┴



In-Plane Magnetization: Pattern development

• Magnetic field intensity is large

• Precisely known field size 
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Breakdown of the Macrospin Approximation 
H increases

With increasing field, deposited energy far exceeds macrospin approximation
this energy is due to increased dissipation or spin wave excitation  



Magnetization fractures under ultrafast field pulse excitation

Macro-spin approximation
uniform precession

Magnetization fracture
moment de-phasing 

Breakdown of the macro-spin approximation
Tudosa et al., Nature 428, 831 (2004)

C. Stamm et al. Phys. Rev. Lett. 94, 197603 (2005)



Experiments with Femtosecond Bunches

• reduce bunch length from ~5 ps to ~140 fs

• keep beam energy and charge fixed 

• fields increased by factor of 35

• fields have unprecedented strength in materials science: 

B-field:  60 Tesla

E-field:  20 GV/m



140fs40μm

Experiments with femtosecond bunches

Observe two key new effects



Magnetic pattern is severely distorted for short bunch

140 fs

5 ps



Pulse length: 4 ps

Pulse length:  140 fs

Peak field 35 times stronger

Ultra-short, ultra-strong field pulse shows no heating and damage



Surprising results:

• Magnetic pattern is severely distorted

• No apparent damage or heating by beam

Materials behave unexpected under extreme conditions !



Electron beam is equivalent to ultra-strong half-cycle THz pulse 



SLAC e-beam pulse versus THZ half-cycle pulse

red: SLAC pulse

black: THz half cycle pulse

SLAC THz pulses > 100 times stronger than previously produced pulses



Electronic distortion known to lead to magnetocrystalline anisotropy

Bonding fields are a few eV / atom

E ~ 1010 V / m = 1 V / Å rivals bonding fields



Electric Fields and Electronic Structure

Co bandwidth ~ 3eV

a E ~ 1010 V/m

a = 0.25 nm

ΔV = e E a ~ 2.5 eV

potential gradient leads to breakup of conduction path
no current flow due to field – not heating

Potential of a regular linear lattice

Potential along E field direction



Summary

• The breakdown of the macrospin approximation for
fast field pulses limits the reliability of magnetic switching

• At ultrafast speeds (< 1 ps) new ill-understood phenomena exist
one approaches timescales of fundamental interactions between
electrons, lattice and spin

• Future experiments will explore the details using both H and E fields

• In the future, e-beam “pump”/ laser “probe” experiments are of interest, as well 

For more, see: http://www-ssrl.slac.stanford.edu/stohr
and

J. Stöhr and H. C. Siegmann 
Magnetism: From Fundamentals to Nanoscale Dynamics
800+ page textbook ( Springer, 2006 )


