

• Witness bunch needs to be be half-plasma period behind \sim 100µm for 1E17 plasma!

4

Run	Plasma Wakefield Accelerator Program	
	Program	Description
		Electrons
FY10	Commissioning	Commission profile monitors, bunch length diagnostics and energy spectrometers. Initiate first experiments.
FY11	Acceleration of witness bunch with narrow energy spread	Demonstrate creation of two bunches with notch collimator then accelerate a witness bunch with narrow energy spread.
FY12	Quantify efficiency & optimization	Optimize notch collimator & plasma density to quantify tradeoff between final energy spread and efficiency.
FY13	Quantify efficiency & optimization	Continuing from FY12.
FY14	Plasma lens	Demonstrate high demagnification plasma lens with sub-micron spot size.
FY15	Emittance preservation & Ion motion	Vary ratio of the beam/plasma density to quantify emittance growth due to ion motion.
		Positrons
FY10		
FY11	High Gradient Acceleration	Study wake amplitude for single, short positron bunches in a field ionized plasma for the first time.
FY12	High Gradient Acceleration	Continuing from FY11.
FY13	Hollow Channel Plasmas	Use plasma sources with a hollow channel, density minimum on axis, to increase wake amplitude and minimize emittance growth.
FY14	Positrons in electron beam driven wakes	Create positrons within the electron wake using a conversion target within the plasma source.
FY15	Positrons in electron	Re-configure ASF beamline to combine electrons &

Results of this program will guide future facility upgrades...

