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•The FACET ASF Area

•Two bunch plasma wakefield acceleration

•Positron acceleration

•Trapped particles

•Future possibilities

Outline
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Plasma Accelerator Experiments will take 
place in the Sector 20 ASF Area

FACET
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At FACET we will produce and accelerate a discrete 
bunch – not just a few electrons at all phases

Challenges:
• Drive bunch needs to be substantial enough to both ionize the vapor and drive a large 

amplitude wake
• Witness bunch needs to be be half-plasma period behind ~ 100µm for 1E17 plasma!
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FACET ASF uses a three stage bunch compression process

end of FACET dogleg

FACET IP

Very similar to FFTB/SPPS operation

Energy

Charge

Sigma z

Sigma r

Peak Current

Species

24 GeV

3 nC

17 µm

< 10 µm

22 kAmps

e- & e+
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E-167 Data

Single FFTB Bunch Sampled All Phases of the Wake
Resulting in  ~ 200% Energy Spread 
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Access to time 

coordinate 

along bunch

Exploit Position-Time Correlation on e- bunch to create separate 
drive and witness bunch

x ! "E/E ! t

1. Insert tantalum blade as notch 

collimator

Creating Two Bunches: Use a Notch Collimator

2 Do not compress fully to preserve 

two bunches separated in time
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A variation of the notch collimator was recently 

demonstrated at BNL ATF

(P. Muggli, V. Yakimenko et al submitted for publication)
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Use a combination of 6D particle tracking in ELEGANT

combined with EGS4 to simulate the collimator(s)

Two bunches
Sigma z 18µm ea.

Separation ~150µm
Charge ratio ~ 3:1

NDR exit to FACET IP
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Courtesy of Paul Emma

LCLS Accelerator Schematic
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FACET Notch Collimator drive bunch 
comparable to state of the art
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FWHM = 0.35%

FACET Simulation
After 50cm 1.8E16 plasma

FACET Experiments will accelerate a discrete bunch of  
particles with narrow energy spread
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100!m
~1m

Plasma Accelerators are not just very-high 
frequency structures

Incoming beam properties partly define the structure:
dimensions, field amplitude, transformer ratio...

Full understanding requires experimentation, observation and simulation
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PWFA Mechanism Different For A Positron Beam

Positron Focusing varies with radius and position along the bunch
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U  C  L  AP. Muggli, SLAC 02/14/07

FOCUSING OF e-/e+
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• Ideal Plasma Lens

in Blow-Out

Regime

• Plasma Lens

with Aberrations

• OTR images !1m from plasma exit (!x"!y)Positron Focusing varies with radius
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5.7GeV in 39cm
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High Gradient Positron Acceleration

• First experiments will attempt to repeat E-167 with positrons

• Not trivial when consider difference in plasma electron response:

• Second phase will use two bunches (notch 
collimator will work equally well with e- or e+)

• Measure halo formation and emittance growth 
with DSOTR & quad scan in x-plane of dispersed 
beam to isolate accelerating portion of the wake

P. Muggli et al submitted to PRL
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• Potential for larger accelerating fields and less aberrated focusing

• Synergy with DWA which may work equally well with e- & e+

• Challenge for plasma source development in field ionized regime

• Potential to engage new users/collaborators:

Hollow Channel Plasmas may offer better 
accelerating wakes and reduce emittance growth

Appl. Phys. Lett., Vol. 73, No. 20, 16 November 1998
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Positron Acceleration in Electron Beam Driven 
Wakes  is possible in the weakly non-linear regime
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foil target
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Generating closely-spaced mixed-species bunches is 
simplified by creating the positrons in the plasma 
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EGS5 Simulation of electron and positron energy spectra 
and phase space after 0.5mm tantalum target
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Wakefield structure naturally selects the positrons with 

appropriate phase space and accelerates them to high energy

Distance into plasma
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Plasma
electrons

Foil
produced
positrons

Beam
electrons

5

10

15

20

25

30

35

0

2

4

6

0 20 40 60 80

R
e
la

ti
v
e
 e

n
e
rg

y
 s

p
re

a
d

(%
)

P
e
a
k
 e

n
e
rg

y
 (G

e
V

)

Plasma length(cm)

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15

#
 o

f 
e
+

 (
a
b

s
. 
u

n
it

)

E(GeV)

–– Positron energy spectrum @ 2 mm
–– Positron energy spectrum @ 1 m

Positron Energy Spectrum

After 1m
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Li Oven Heaters

Plasma Light
Spectrograph

Dipole

Mask

Two Main Features
• 4 times more charge
• >104 more light!

Two energy populations (MeV & GeV)

Note: Primary beam is also radiating!

Electrons Are Trapped at He Boundaries

and Accelerated Out of the Plasma

New Phenomena: Trapped Particles
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Visible Light Spectrum Indicates Time Structure of Trapped Electrons

!"# = 2$

Bunch Spacing = c! % 70 µ,

plasma wavelength, &p = 64 µ.

OSIRIS Simulations:
• He electrons in several buckets
• Spaced at plasma wavelength
• Bunch length ~fs

Trapped Particles Have Short Time Structure
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M. J. Hogan PAC2007 June 27, 2007
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13

Drive Beam

Trapped

Electrons

Trapped Particles

High Brightness Electron Source?

• Multi-GeV Energy

• fs pulse length

• Normalized Emittance 10 smaller than the 

drive beam

Designing next generation experiments to better understand 
and produce more of them!
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Can Be Optimized by Varying Beam and Plasma Parameters

OSIRIS Simulations indicate the high-quality trapped particle 

bunches are destroying themselves trying to get out

Ionization 
level

Ionization 

He

Energy

Li

(eV)

Ar

1st 24.587 5.392 15.759

2nd 54.416 75.638 27.629

3rd 122.451 40.74

– Helium
– Lithium2µm FWHM!

Drive Beam

Trapped 
Particles
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5 Year FACET Program

Results of this program will guide future facility upgrades...
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Possibilities:

• Lower damping ring energy

• Better compression, higher peak current

• Enhanced LCLS style photoinjector

• Multiple bunches, bunch trains, shaped pulses with added flexibility

• ASSET type experiment with e-e+, 5cm dz @ Li09 chicane, coast to FACET IP

• Positron acceleration in electron wakes with ‘real beam’ of positrons

• NLC/ILC style FF

• Sub-micron spots @ IP for ion motion studies

• Holography of e+ wakes, EO sampling

Future upgrades will be guided by results
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U  C  L  A

From the FFTB Program
Over 25 Peer reviewed publications covering all aspects of beam plasma interactions: Focusing (e- & e+), 
Transport, Refraction, Radiation Production, Acceleration (e- & e+)

Major Accomplishments

Plasma Wakefield Accelerator

Research Summary
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Drive Beam Accelerator

12 usec trains of e- bunches accelerated to ~25 GeV
Bunch population ~3 x 1010, 2 nsec spacing
100 trains / second

Main Beam e+ Source:500 nsec trains of e- bunches 
Bunch population ~1 x 1010, 2 nsec spacing
100 trains / second

DR
PWFA Cells:

25 GeV in ~ 1 m, 20 per side
~100 m spacing DR

Main Beam e- Source:

500 nsec trains of e- bunches 
Bunch population ~1 x 1010, 2 nsec spacing
100 trains / second

Beam Delivery System, IR, and 
Main Beam Extraction / Dump 

~2 km

~60 MW drive 
beam power 

per side

~20 MW main beam 
power per side

~120 MW AC 
power per 

side

~ 4 km

The FACET PWFA Program will address many of the current 

questions pertaining to a PWFA-LC

FWHM = 0.35%

FACET Simulation

After 50cm 1.8E16 plasma

5.7GeV in 39cm
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