Cherenkov Telescope Array (CTA-US)

Stefan Funk, Hiro Tajima, Justin Vandenbroucke

KIPAC September 14, 2010

1

The imaging atmospheric Cherenkov telescope (IACT) technique for ground-based TeV astrophysics

- Optical frequency (blue) light
- Very short (few ns) exposure to limit night sky background
- Cherenkov cone very narrow, ~1°:

$$\theta = \cos^{-1} \frac{1}{n\beta}$$

GeV and TeV gamma-ray physics and astrophysics

Cherenkov Telescope Array (CTA)

- American collaboration (AGIS) merged with European CTA in May 2010, now known as CTA-US
- Array of atmospheric Cherenkov telescopes
- Increased effective area, back ground rejection, angular resolution, field of view relative to current generation
- Hierarchy of 3 telescope sizes to span broad energy range >50 GeV (nominally 6, 12, 24 m diameter)
- ~1 km² effective area
- ~0.1° pixel resolution (2x better than VERITAS)
- 8° diameter field of view (4x current generation)
- Two possible telescope designs: Davies-Cotton and Schwarzschild-Couder
- Prototyping 2012-2013, construction starting 2014
- >700 scientists

4

Low-energy section energy threshold of some 10 GeV

Core array: mCrab sensitivity in the 100 GeV–10 TeV domain Hi

High-energy section 10 km² area at multi-TeV energies

PASAG and Astro 2010 strongly endorsed CTA

- PASAG
 - "Given the great excitement in the field and the success of the technique, a more ambitious and likely very highly productive concept for the future is an array of many (~50) atmospheric Cherenkov telescopes distributed over a square kilometer."
- Astro 2010
 - Ranked among top 4 priorities for large ground-based projects, after LSST and Giant Segmented Mirror Telescope
 - "The last decade has seen the coming of age of very high energy (TeV) astronomy... Further progress is now dependent on building a larger facility exploiting new detector technology and a larger field of view so that the known sources can be studied in more detail and the number of sources can be increased by an order of magnitude."
 - "The promise of this field is so high that continued involvement is strongly recommended."

Why now? Why SLAC?

• Why now? Era of rapid discoveries with GeV and TeV gamma rays

- Handful of TeV sources known prior to 2005 (when HESS started), now >100 and growing each month: tip of iceberg
- Much progress to be made following recent discoveries
 - Increase number of sources in each class to understand whole populations
 - For individual sources, transition from *detection* to *understanding*: need enough statistics for spectral, temporal, morphological studies
- Capitalize on Fermi's leap forward in GeV by following up in TeV
 - Existing TeV instruments do not have sensitivity or time to observe all Fermi sources (~half of which are still unidentified)
 - Simultaneous operation of Fermi and CTA for follow-up and temporal studies
- Why SLAC? Engineering, management, scientific expertise
 - Excellent electrical engineering: SLAC can lead electronics for CTA
 - With continuing success of Fermi Gamma-ray Space Telescope, SLAC/KIPAC is a world leader in gamma-ray astronomy
 - SLAC a potential leader of US component of CTA

Modular camera design developed by SLAC (FY10)

9 "subfields" in telescope focal plane each with 36, 32, or 15 camera modules:

36 telescopes x 224 modules x 64 pixels = ~500k channels total for CTA

DOE Site Visit: Sept 13-14, 2010

- Scaling from ~3k (current generation) to ~500k total channels requires
 - Robust design: modular
 - Low cost per channel
- 4 TARGET digitizer chips per MAPMT
- 16 channels per TARGET chip
- 1 GSample/s sampling of each channel
- Goal: \$10-20/channel (electronics + MAPMT)
 - Current generation is ~\$1k/channel
- Schwarzschild-Couder telescope allows small pixels and low cost per pixel

Camera module prototyping at KIPAC (FY10)

top view

......

FPGA (opposite side of board)

TARGET v1 digitizer chip (FY10)

- TARGET v1 produced, tested, characterized
- Low cost (\$20 / channel)
- Large number of channels per chip (16), with deep buffer (4096 samples per channel = ~4 μs)
- 1 GSample/s demonstrated
- 7.1 mW/channel demonstrated
- Transfer function, noise, temperature dependence measured
- FY11: TARGET v2 being designed with experience from v1 in FY10

FY11 plans: TARGET v2; integration with CTA; camera backplane

- Design, fabricate, test, characterize TARGET v2
 - Increase from 4k to 16k capacitors per channel (4 µs to 16 µs buffer) to allow sophisticated multi-telescope triggers and improve signal-tobackground
 - Faster digitization for reduced dead time (from 300 to 30 µs to read out all 16 channels per chip)
 - More automated calibration capability
- Integrate SLAC electronics design with Small Size Telescope design
- Design camera backplane electronics (performs camera trigger and communicates with outside of telescope):

Issues and risks

- Level of US participation in CTA
 - Astro 2010 suggested US contribute \$100M of \$400M total
- Telescope design selection
 - Davies-Cotton more established, Schwarzschild-Couder more risky but could achieve better field of view and resolution and camera cost
- Electronics design selection
 - SLAC design with TARGET chip well received by CTA (esp. for Small Size Telescopes) but there are competing designs (e.g. Swiss DRS chip, optimized for other projects)
 - TARGET design especially good for Schwarzschild-Couder telescopes, multi-anode PMTs, small pixel size with large channel multiplicity (small cost per channel and compact physical size)

Extra slides

DOE Site Visit: Sept 13-14, 2010

Timeline

Finances and Manpower

- Finances:
 - FY09, FY10: Laboratory Directed Research and development (LDRD) funding (~\$300k / year)
 - FY11 LDRD funding approved August 23, 2010 (\$360k)
- Manpower (each is fractional FTE)
 - Stefan Funk
 - Hiro Tajima
 - Seth Digel
 - Richard Dubois
 - Leonid Sapozhnikov
 - Justin Vandenbroucke
 - Akira Okumura
 - Keith Bechtol

Number of X-ray, GeV, and TeV sources over time ("Kifune plot")

DOE Site Visit: Sept 13-14, 2010

Pair production telescopes	Atmospheric Cherenkov tels.	Particle detector arrays		
	MAGIC by day	Milagro, Tibet array, HAWC		
EGRET, Fermi	MAGIC, HESS, VERITAS +	100 CoV 100 ToV		
Space borne: limited in area	Large effective area	Large effective area		
Background free	Excellent background rejection	Very good background reject.		
Large field of view / high duty cycle	Small field of view / low duty cycle	Large field of view / high duty cycle		
All-sky survey and monitoring	Study of known sources Deep survey of limited regions	Partial (2/3) sky survey and monitoring		
Extragalactic (AGNs, GRBs),	Morphology of TeV emitters (SNRs,	Extended sources		
PSRs, MQSO	PWN)	Transients (GRBs) > 30 GeV		
	High resolution spec. to 30 TeV	Spectra up to 100 TeV		

Current generation of imaging atmospheric Cherenkov telescopes

- HESS: telescopes (13 m diameter; 5th with 28 m diameter under construction) in Namibia (Southern Hemisphere)
- MAGIC: 2 telescopes (1 since 2004 and 2 since 2009, both 17 m diameter) on La Palma, Spain (Northern hemisphere)
- VERITAS: 4 telescopes (12 m diameter) in Arizona, USA (Northern hemisphere)
- CANGAROO III: 4 telescopes (10 m diameter) in Woomera, South Australia

Optical design: two-mirror Schwarzschild-Couder telescopes Vassiliev et al. 2007

- AGIS (Advanced Gamma-ray Imaging System):
 - Improve sensitivity by ~x10 (0.1-10 TeV)
 - 36 telescopes (cf. 4 for H.E.S.S. & VERITAS)
 - Wide field-of-view, high angular resolution (small pixel size)
 - Sharper image, better BG rejection

20

- \$220M includes construction and operation for 10 years
- Favorably reviewed by PASAG and by Page

CTA / AGIS effective area

DOE Site Visit: Sept 13-14, 2010

CTA / AGIS angular resolution

CTA science example: Galactic sources

- ±3° in Galactic latitude, ±30° in Galactic longitude
- simulated Galactic plane survey
- detect ~300 Galactic (+ hundreds of extragalactic) sources
- good spatial resolution for existing and new sources
 - determine spatial extension and morphology

DOE Site Visit: Sept 13-14, 2010 23

TeV Catalog legend

http://tevcat.uchicago.edu/

DOE Site Visit: Sept 13-14, 2010

Fermi sources by category (first catalog)

Source class	EGRET sources: 271	Fermi sources: 1451
Pulsars	5	39 radio loud + 24 radio quiet
Pulsar wind nebulae	0	5
Supernova remnants	0	44
Globular clusters	0	8
X-ray binaries	0	3
Active galaxies	94	661
Normal galaxies	1 (LMC)	2 (LMC + SMC)
Starburst galaxies	0	2
Solar flare	1	0 (but pp + IC detected)
Unassociated	170	630
5 new source classes	S	Abdo et al., ApJS 188, 405 (2

- 5-7% of 821 associations are by chance
- 43% unassociated! Large discovery potential: multi-wavelength campaigns

LDRD budget breakdown

Title: Development of an integrated TeV γ-ray camera readout system

Lead Scientist: Stefan Funk

COST ELEMENT		Fiscal		Fiscal		Fiscal
		Year		Year		Year
	FTE	2010	FTE	2011	FTE	2012
	%	(\$000)	%	(\$000)	%	(\$000)
Labor (give levels of effort with names, or if						
unknown indicate TBD) FTE						
Scientific & Professional	41.67		41.67			
		\$64,670		\$66,610		\$0
Post Doc	100		100			
		\$50,400		\$59,007		\$0
Other						
	_	\$0		\$0		\$0
Total Labor		\$115,070		\$125,617		\$0 \$0
Labor Burdened @ 54.6%*		\$62,828		\$68,587		\$0
Total labor Burdened		\$177,898		\$194,204		\$0
Indirects @ 45%		\$80,054		\$87,392		\$0
Total Labor & Indirects		\$257,952		\$281,596		\$0
TRAVEL		¢c 000		¢c 000		¢0
Indianata @ 45%		\$0,000 \$2,700		\$0,000 \$2,700		\$U \$0
Tatal Travel 8 Indirecto		\$2,700 \$9,700		φ2,700 ¢9,700		\$0 ¢0
Total Travel & Indirects		\$8,7 0 0		\$8,700		م و
DISTRIBUTED TECHNICAL SERVICES						
Materials		\$50,000		\$61,000		\$0
Supplies		\$2,000		\$2,000		\$0
Services		\$200		\$200		\$0
Indirects @ 8%		\$4,176		\$5,056		\$0
Total Services & Indirects		\$56,376		\$68,256		\$0
TECHNICAL COLLABORATORS / CONSULTANTS						
Sub-contracts						
Contracts Burden @%						
TOTAL PROJECT COST		\$323,028		\$358.552		\$0

TeV sources (from TeVCat, September 2010)

Source type	Number of sources			
Dark	1			
Fanaroff-Riley Type I radio galaxy	2			
Flat-spectrum radio quasar	3			
High-frequency-peaked BL Lac	24			
Intermediate-frequency-peaked BL Lac	4			
Low-frequency-peaked BL Lac	3			
Other	3			
Pulsar wind nebulae	25			
Shell-type supernova remnants	11			
Starburst galaxies	2			
Unidentified	29			
Wolf-Rayet stars	3			
X-ray binaries	3			
Total	113			

CTA sensitivity

Fermi measurement of cosmic ray electron + positron spectrum from 20 GeV to 1 TeV

- Most cited Fermi paper and 8th most cited paper of 2009 (ADS) [not a gamma-ray result!]
- Power law index -3.0
- Now extended down to 7 GeV: arXiv:0912.3611

Abdo et al., PRL 102, 181101 (2009)

HESS measurement of cosmic ray electron + positron spectrum from 600 GeV to 4 TeV

- Select events away from Galactic plane and point sources
- Discriminate hadron background

NAL ACCELERATOR LABORATO

• Steepening above 600 GeV: index = -3.9 ± 0.1 (stat) ± 0.3 (syst)

Site candidates

- Northern hemisphere:
 - Canary Islands (2400 m above sea level)
 - Baja California (2800 m asl)
- Southern hemisphere
 - Namibia (1800 m asl)
 - Chile (2400 m asl)
 - Argentina (2600 or 3700 m asl)
 - South Africa?

Dark matter with CTA

- Observe local galaxies, dwarf spheroidals, globular clusters, galactic center
- Improve energy threshold from 150 GeV (VERITAS) to 30-50 GeV (CTA)
- Search for spectral signatures of dark matter (e.g. line or cutoff at WIMP mass)

