Advanced Accelerator Concepts

J.S.Wurtele

Department of Physics University of California, Berkeley

Center for Beam Physics Lawrence Berkeley National Laboratory

> AARD Presentation December 21, 2005

* email: wurtele@physics.berkeley.edu

funded by the Department of Energy

<u>A University Group with Collaborations at</u> <u>National Laboratories</u>

Neutrino Factories and muon colliders: Led collaboration simulation/theory group for a few years. Co-chair of NuFact'00 Workshop and on SPC many years. Member of the collaboration executive committee.

Theory and design of ionization cooling channel design (FNAL,BNL,LBNL, CERN)

➡Theory of optical stochastic cooling for muons (LBNL)

High gradient structure test at MIT 30GHz FEL [LLNL/LBNL/CERN]

Fluctuational diagnostics @ATF/BNL [Catravas Thesis]

Plasma channel accelerators [LBNL]

Ongoing collaborations with AFRD/LBNL groups [CBP: optical beam manipulations; VNL: WARP simulations for beams and anti-Hydrogen plasmas]

A wide range of Advanced Accelerator Research Activities

Muon beams

*Muon ionization and optical stochastic cooling: theory, simulation, design and optimization

Plasma-based accelerator concepts

*EIT, ion acceleration, and connections between beam/plasma and atomic physics

*Theory for plasma channels: Q, R/Q, break-up instabilities, simulations

*Autoresonant beatwave excitation

Simulation and theory of beam-plasma dynamics, connections to astrophysics

Radiation Sources

Theory and experiment on FEL RF power sources, high gradient structure testing *Single shot bunch length and other radiation based diagnostics Beam phase space manipulations (e.g., conditioning) *Theory of high harmonic cascade FELs Magnetic radiation guiding

Storage Rings

Coupled mode theory of bunch lengthening with potential well distortion Instability control in rings using variable chromaticity

Beam Physics Analogs

Study of beam physics analogs (virtual cathodes, two-stream instabilities, nonlinear phase space structures) in nonneutral plasma systems.

University Connections

Initiation of the MIT advanced accelerator program and UCB campus program

- Muons produced in a large 6-D phase space volume that must be decreased.
- Cooling in L~cτµ~660m.
- Ionization cooling (Skrinsky&Parhomchuk,81).

Need to fight multiple scattering and longitudinal blowup

EIT in Magnetized Plasma: Applications to ion acceleration, pulse compression

(in presence of longitudinal, static, solenoidal field) weak probe in absorption band: $\Omega_c \leq \omega_p \leq \Omega_c + \Delta$

 $a_1 = 0.005, a_2 = 0.05, \omega_1 = \Omega_c, \omega_2/\Omega_c = 0.7, \omega_p/\Omega_c = 0.3, \Delta z = 6 \times 2\pi c/\Omega_c$

Some parallels between atomic and plasma physics

opportunities for cross-fertilization?

Annular atomic traps

EIT Raman Scattering Stimulated/Spontaneous **Emission/LASER** quasi-particles/ elementary excitations energy/momentum conservation quanta/quasiparticle conservation WKB approximation Adiabatic theorems/invariants Landau-Zener Transitions

STIRAP

FIT **Emission/FEL**

BERKELEY LABI

Robust PBWA Excitation

- Traditional Plasma Beat Wave Acceleration is very sensitive to resonant at ω_p
- Autoresonance sweeps beat frequency through resonance ⇒ insensitive to exact density

CO₂ system - 8 - 10 GeV/m fields with $\pm 20\%$ variations in density Ti:Sa system - ~ 250 GeV/m fields with $\pm 35\%$ variations in density

Lindberg et al., PRL (2005)

- Number of stages and harmonic of each to be optimized during study.
- Bunching ever more difficult at higher harmonics
- Fresh electrons at each radiator
- Limited by beam quality.

Designs (NOT HEP funded) used FEL simulations Ginger and Genesis: eikonal field + particles. [Zholents, Fawley, Penn et al.]

Variational Principle Reduces FEL Low Gain Harmonic Generation from Simulation to Optimization.

Optimization: Spontaneous emission couples to transverse mode that maximizes beam energy loss

CBP FEL group 2005

Conclusions

- •The advanced technology R&D program must include an innovative, diverse, intellectually vigorous University program
- •Scientific understanding of beam physics should be a central goal of the U.S. DOE advanced accelerator research program on a par with the goal of developing accelerator technology.
- •University programs serve as a bridge between the accelerator research community and the rest of the scientific community.

"Sustain and Strengthen the nation's traditional commitment to long term basic research..."

"Increase the federal investment in long term basic research by 10% a year over the next 7 years..." "Allocate at least 8% of the budget of federal research agencies to discretionary funding that would be focused on catalyzing high-risk high-payoff research"

from the NRC Report, "The Gathering Storm: Energizing and Employing America for a Brighter Economic Future" [2005]