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Abstract

The Delta undulator quadrants are tuned individually and are then assembled to make the
tuned undulator. Bow of the quadrants on the tuning stand can cause large phase errors in the
assembled undulator. The e¤ect of quadrant bow is studied in this note and limits on bow are
derived in order to limit phase errors.

1 Introduction1

The Delta undulator2 is tuned by individually tuning each of the four quadrants. The permanent
magnet material of the quadrants has relative permeability approximately equal to 1, so the magnetic
�eld of the assembled undulator is approximately the same as the superposition of the �elds from the
four quadrants. If each quadrant is tuned to give straight trajectories and small phase errors, the
assembled undulator should give straight trajectories and small phase errors to good approximation.
The method of tuning each quadrant individually is very sensitive to the position of the Hall

probe relative to the quadrant. The magnetic �eld from a quadrant decays exponentially with
distance away from the quadrant. If the quadrants are systematically bent during tuning, phase
errors are introduced in the assembled undulator as explained below. Similarly, if the undulator is
assembled with the quadrants bent, phase errors are introduced.
When tuning the Delta undulator, it was noticed that the weight of the quadrants introduced a

systematic bow in their shape while they were being tuned. In this note, we detail the e¤ect of this
bow, and we set limits on the bow in order to limit the resulting phase errors.

2 Quadrant Bow During Tuning

During the tuning of the Delta undulator, the quadrants were held in a kinematic mount and their
weight caused a vertical bow in their shape. Figure 1 shows CMM measurements of the bow of
quadrant 2. The size of the bow is approximately 30 microns.
The bow during tuning leads to �eld errors in the assembled undulator as outlined in �gure 2.

When the quadrant is placed on the bench, it assumes the bowed shape shown in part A) of the
�gure. The measurement probe follows a straight line over the magnets and we assume it is at the
beam axis location in the center of the quadrant. The beam axis is indicated by the z-axis in the
�gure. The quadrant is tuned by "virtual shimming", that is, by moving the permanent magnets.
E¤ectively, the magnets are moved so that they follow a straight line despite the curvature in the

1Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the
LCLS project at SLAC.

2A. Temnykh, Physical Review Special Topics-Accelerators and Beams 11, 120702 (2008).
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Figure 1: When the quadrants were placed on the bench, they bowed by approximately 30 microns.

magnet keeper. This is shown in part B) of the �gure. When the keeper is straightened in
the assembled undulator, the magnets move relative to the beam axis and e¤ectively reverse their
original curvature as shown in part C) of the �gure. The magnets are further from the beam axis
at the ends of the undulator and the �elds are weaker there. The change in �eld strength along the
undulator causes phase errors, as discussed below.

3 Phase Errors In The Assembled Undulator

Suppose the magnet arrays in the assembled undulator assume the inverse of the bow of the keeper
when the quadrant was placed on the measurement bench, as discussed in the previous section. We
derive below the phase errors resulting from such a bow in all four quadrants. We consider the Delta
undulator in planar, vertical �eld mode, but the results are easily extended to other polarization
modes.
The slippage between two points a and b in a planar undulator with vertical magnetic �eld is

given by3

Sab =

Z b

a

1

2
2
+
1

2
x02dz (1)

where 
 is the Lorentz factor and x0 is the slope of the horizontal trajectory in the vertical undulator
�eld. The horizontal trajectory slope is given by

x0 =
eK


cos(kuz) (2)

where eK is the local undulator parameter at the z-position of interest, and ku = 2�=�u, where �u
is the undulator period. If we consider two points a and b spaced apart by one period, the slippage

3Z. Wolf, "Introduction To LCLS Undulator Tuning", LCLS-TN-04-7, June, 2004.
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Figure 2: A) The quadrants assume a bowed shape when placed on the bench. B) Tuning the
quadrant e¤ectively moves the magnets to a straight line, even though the magnet keeper is bowed.
C) When the quadrant structures are placed in the undulator, the keepers assume a straight shape,
but the magnet positions have a bow.

in the period is given by

S�u =
1

2
2

�
1 +
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2
eK2

�
�u (3)

The vertical magnetic �eld can be considered as an ideal �eld By plus small errors �By that
change with position. We assume the magnetic �eld keeps its sinusoidal z-dependence to good
approximation and the small errors make �eld changes over long distances compared to a period.
The local undulator parameter eK can be written as an ideal valueK, plus a small position dependent
change �K. eK = K +�K (4)

The error in the �eld causes a change in the slippage per period compared to the ideal case of

�S�u =
�u
2
2

K�K (5)

Since the K value is proportional to the �eld, we have

�K

K
=
�By
By

(6)

So

�S�u =
�u
2
2

K2�By
By

The change in the phase corresponding to the slippage change is given by

�P =
2�

�r
�S (7)

where, to good approximation, we can use the radiation wavelength from the ideal undulator, which
is given by

�r =
�u
2
2
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�
(8)
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So the change in the phase per period compared to the ideal case is

�P�u = 2�
K2

(1 + 1
2K

2)

�By
By

(9)

The �elds from a Delta undulator quadrant are given by4

Br = B0q exp(�kur) cos(ku(z � z0)) (10)

where r is measured away from the quadrant and z is measured along the quadrant. If the quadrant
bows upward by +�yq during tuning when it is placed on the bench, the distance from the magnets
to the beam axis changes by �r = ��yq. The �eld on the beam axis changes by

�Br
Br

= +ku�yq (11)

Positive position changes of the quadrant make the magnets move closer to the beam axis, increasing
the �eld from the quadrant. The undulator will be tuned to take out this �eld change. When
the quadrant is assembled straight, the negative of this �eld change will appear in the assembled
undulator. �

�Br
Br

�
undulator

= �ku�yq (12)

When the assembled undulator is in planar, vertical �eld mode, the vertical undulator �eld is
given by

By =
4Brp
2

(13)

so �
�By
By

�
undulator

=

�
�Br
Br

�
undulator

= �ku�yq (14)

assuming the bend in the quadrants is the same for all quadrants.
The change in the slippage per period in the assembled undulator compared to the case when

the quadrants are tuned straight is then

�S�u = �
�u
2
2

K2ku�yq (15)

and the change in phase per period is

�P�u = �2�
K2

(1 + 1
2K

2)
ku�yq (16)

For the Delta undulator, the period is 0:032 m. Inserting a value of K = 3 and a position change of
�yq = 10 microns gives a phase change of �1:16 degree per period. This di¤erence will accumulate
as one moves down the undulator.
Suppose the undulator has length L and we take z = 0 at the undulator center. The accumulated

slippage change along the undulator from initial position z = �L=2 where the slippage di¤erence is
zero to an arbitrary z is given by

�S(z) =

Z z

�L=2
� �u
2
2

K2ku�yq(z
0)
dz0

�u
(17)

The quadrants are supported at two points and bend on the test bench in an approximately quadratic
manner. We take the position to be correct at the center, which means that the Hall probe is at

4Z. Wolf, "A Calculation Of The Fields In The Delta Undulator", LCLS-TN-14-1, January, 2014.
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the correct beam axis location at the center of the quadrant. Suppose the quadrant bends up by
�yqmax at the ends. With the approximate quadratic bending, the bend in the quadrant is given
by

�yq(z
0) = �yqmax

�
z0

L=2

�2
(18)

From the undulator entrance to an arbitrary location z, the bending of the quadrants during tuning
causes a slippage change in the undulator compared to the unbent case of

�S(z) = � �u
2
2

K2 ku
�u
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(19)

and the corresponding change in phase is

�P (z) = �2� K2
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Without errors, the undulator has constant K value along its length. The slippage as a function
of z is given by

S0(z) =
1

2
2
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1
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z (21)

With the errors, the slippage as a function of z becomes S = S0 +�S:
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and the phase as a function of z is

P (z) =
2�

�u
z � 2� K2
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In order to determine an e¤ective K value for the undulator, and also the rms phase error in the
undulator, a linear �t is made to the slippage as a function of z. The linear �t has slope M and
the slope gives the e¤ective K value, Keff , as follows:

M =
1

2
2

�
1 +

1

2
K2
eff

�
(24)

and
Keff =

p
2 (2
2M � 1) (25)

The residuals of the �t give the phase errors.

�� =
2�

�r
� residuals (26)

where in this case we use the measured e¤ective K value to determine the radiation wavelength

�r =
�u
2
2

�
1 +

1

2
K2
eff

�
(27)

The Delta undulator has L = 96�u and �u = :032 m. Take K = 3, and 
 = 104 although
the value of 
 drops out of the phase calculations. We take �yqmax = 30 microns, which is the
measured value when the Delta quadrants were initially tuned. The phase in the undulator both
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Figure 3: Phase in the undulator both without errors and with errors scaled by a factor of 10.

without errors and with scaled errors multiplied by a factor of 10 for illustration is shown in �gure
3. As you can see, the phase change from the quadrant bow is small on the scale of the total phase
change, but it is visible at the undulator exit. The change in phase is shown by itself in �gure 4.
These are the actual changes and the previous factor of 10 scaling is not included here or from this
point on. When a linear �t is made to the slippage as a function of z, the K value shifts from its
ideal value of 3 to a value of Keff = 2:9965, and the residuals of the �t give the phase errors. The
phase errors are shown in �gure 5. The rms phase error is 8:4 degrees. For small bow, the rms
phase error scales linearly with the size of the quadrant bow during tuning, with slope 2:8 degrees
per 10 �m of bow. If we wish to limit the rms phase errors from quadrant bow to 5 degrees, the
quadrants must be tuned with a bow of less than 18 �m.

4 Conclusion

If the quadrants are tuned with a bow due to their weight, it produces a systematic o¤set of the
magnet locations in the assembled undulator at the ends of the undulator. This produces a phase
error with a cubic z-dependence. The rms phase error is 8:4 degrees for the 30 �m of bow observed
in the quadrants in their kinematic mounts. If we wish to limit the rms phase error to 5 degrees,
the bow must be kept below 18 �m. Similarly, systematic bow of the quadrants in the assembled
undulator must be kept below 18 �m.
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Figure 4: Change in phase from the quadrant bow.

Figure 5: Phase error and K shift when the quadrants are tuned with 30 �m of bow.
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