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Abstract

One technique used to characterize the Delta undulator is to measure in the bore using an
array of Hall probes. Each Hall element has misalignment errors which will a¤ect the accuracy
of Delta measurements. In order to minimize the e¤ect of the errors, the Hall element angles
are measured and a correction is performed for their misalignment. This note discusses the
calibration procedure and the corrections.

1 Introduction1

LCLS technical note LCLS-TN-13-42 presented a measurement plan for the Delta undulator. Tech-
nical note LCLS-TN-13-93 further discussed the Hall probe array measurements. This included a
discussion of the e¤ect of small misalignments of the Hall elements. In that note, it was assumed
that the misalignments would be corrected. This note presents a plan to measure the Hall element
misalignments and correct for them.
The Hall probe array for the Delta undulator consists of two probes, each probe measuring all

three components of the magnetic �eld. The three components are Bz, along the beam axis, By,
up, and Bx in the direction making a right handed system. The probe array is illustrated in �gure
1. The probe at the end of the array in the z-direction measures on the probe axis. The other

Figure 1: The Delta Hall probe array consists of two probes o¤set in the y-direction, each probe
measuring all three components of the magnetic �eld.

probe measures a distance � o¤set in the y-direction. O¤sets in z are calibrated and are taken into
account in the analysis software. O¤sets in y are also calibrated and are used in the measurements.
O¤sets in x are calibrated and are included in the analysis software.

1Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the
LCLS project at SLAC.

2Z. Wolf, "A Magnetic Measurement Plan For The Delta Undulator", LCLS-TN-13-4, March, 2013.
3Z. Wolf, "Hall Probe Array Measurements Of The Delta Undulator", LCLS-TN-13-9, November, 2013.
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2 Measurements With Hall Element Angle Errors

Suppose a Hall element which is properly aligned is sensitive in the direction of unit vector bn. The
element measures Bn = B � bn. We typically want bn to point in the direction of a coordinate axis so
that we measure the component of the �eld in the axis direction.
Suppose the Hall element is misaligned. Now the element is sensitive in the direction bm. We

measure Bm = B � bm. The direction bm is related to the desired direction bn through a rotation R,bm = R � bn.
We can represent a vector as a column matrix of the components along �xed x, y, and z axes.

The rotation operator is represented as a matrix in this coordinate system. Rotations are considered
in the active sense, they move the sensitive axis of a Hall element from the desired direction to the
actual direction. We build the rotation up out of three rotations: roll, pitch, and yaw. Roll is a
rotation by �R whose axis is along +z and which moves a vector from the +x direction toward the
+y direction. Pitch is a rotation by �P whose axis is along +x and which moves a vector from the
+z direction toward the +y direction. Yaw is a rotation by �Y whose axis is along +y and which
moves a vector from the +x direction toward the +z direction. These rotations are illustrated in
�gure 2.

Figure 2: Roll, pitch, and yaw rotations of the Hall element sensitive direction are illustrated.

Roll is represented by the rotation matrix

RR(�R) =

0@ cos(�R) � sin(�R) 0
sin(�R) cos(�R) 0
0 0 1

1A (1)

Pitch is represented by the rotation matrix

RP (�P ) =

0@ 1 0 0
0 cos(�P ) sin(�P )
0 � sin(�P ) cos(�P )

1A (2)

Yaw is represented by the rotation matrix

RY (�Y ) =

0@ cos(�Y ) 0 � sin(�Y )
0 1 0

sin(�Y ) 0 cos(�Y )

1A (3)

An arbitrary rotation can be made by �rst rotating in roll, then pitch, and then yaw.

R(�R; �P ; �Y ) = RY (�Y )RP (�P )RR(�R) (4)

The order of the rotations is important and a di¤erent order produces a di¤erent overall rotation.
We use this method of specifying rotations since it is closely tied to the �xed coordinate axes. This
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makes it easier to determine the rotation angles for small rotations by using calibration magnets
whose �eld directions are along the coordinate axes. This will be demonstrated shortly. Performing
the matrix multiplications, the rotation matrix is given by

R(�R; �P ; �Y ) =

0@ CY CR + SY SPSR �CY SR + SY SPCR �SY CP
CPSR CPCR SP

SY CR � CY SPSR �SY SR � CY SPCR CY CP

1A (5)

where C� represents cos(��) and S� represents sin(��), and � is R, P , or Y .
In general, the rotation angles considered here are angle errors in the Hall elements and they are

small. We use this to simplify the rotation matrix. We keep second order terms on the diagonal
since these terms a¤ect the main �eld measurement, which a¤ects the measured K value of the
undulator. The o¤ diagonal terms tell how rotation errors mix other �eld components into the
component we are trying to measure. Only the largest �rst order terms will be kept. Furthermore,
we set cos(��) = 1 in the o¤ diagonal terms since the error in doing this is third order. With these
simpli�cations, the rotation matrix becomes

R(�R; �P ; �Y ) =

0@ CY CR �SR �SY
SR CPCR SP
SY �SP CY CP

1A (6)

With this rotation matrix, we calculate the measured �eld values from the rotated Hall elements.
They are given by Bm = B � bm. Since bm = R � bn, we have Bm = B �R � bn. In matrix form, this is

Bm = B
TRn (7)

We now apply this formula to each of the Hall elements.

2.1 Measured Fields

2.1.1 Bx Hall Element

Consider the Hall element which is used to measure Bx. It has angle errors �xR, �xP , and
�xY for roll, pitch, and yaw, respectively. For this element, the nominal sensitive direction is
n =

�
1 0 0

�T
in matrix form. With the angle errors, we measure

Bxm =
�
Bx BY Bz

�0@ cos(�xY ) cos(�xR) � sin(�xR) � sin(�xY )
sin(�xR) cos(�xP ) cos(�xR) sin(�xP )
sin(�xY ) � sin(�xP ) cos(�xY ) cos(�xP )

1A0@ 1
0
0

1A
(8)

This gives
Bxm = cos(�xY ) cos(�xR)Bx + sin(�xR)By + sin(�xY )Bz (9)

2.1.2 By Hall Element

Consider the Hall element which is used to measure By. It has angle errors �yR, �yP , and �yY
for roll, pitch, and yaw, respectively. For this element, n =

�
0 1 0

�T
. With the angle errors,

we measure

Bym =
�
Bx By Bz

�0@ cos(�yY ) cos(�yR) � sin(�yR) � sin(�yY )
sin(�yR) cos(�yP ) cos(�yR) sin(�yP )
sin(�yY ) � sin(�yP ) cos(�yY ) cos(�yP )

1A0@ 0
1
0

1A
(10)

This gives
Bym = � sin(�yR)Bx + cos(�yP ) cos(�yR)By � sin(�yP )Bz (11)
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2.1.3 Bz Hall Element

Consider the Hall element which is used to measure Bz. It has angle errors �zR, �zP , and �zY for
roll, pitch, and yaw, respectively. For this element, n =

�
0 0 1

�T
. With the angle errors, we

measure

Bzm =
�
Bx By Bz

�0@ cos(�zY ) cos(�zR) � sin(�zR) � sin(�zY )
sin(�zR) cos(�zP ) cos(�zR) sin(�zP )
sin(�zY ) � sin(�zP ) cos(�zY ) cos(�zP )

1A0@ 0
0
1

1A
(12)

This gives
Bzm = � sin(�zY )Bx + sin(�zP )By + cos(�zY ) cos(�zP )Bz (13)

2.1.4 Summary

We can put the equations for the measured �elds in matrix form to summarize the results.0@ Bxm
Bym
Bzm

1A =

0@ cos(�xY ) cos(�xR) sin(�xR) sin(�xY )
� sin(�yR) cos(�yP ) cos(�yR) � sin(�yP )
� sin(�zY ) sin(�zP ) cos(�zY ) cos(�zP )

1A0@ Bx
By
Bz

1A (14)

where Bxm is the �eld measured by the x-sensor, Bym is the �eld measured by the y-sensor, and
Bzm is the �eld measured by the z-sensor.

2.2 Measured Fields With Rotated Probe Assembly

The Delta undulator Hall probe assembly contains two probes o¤set from each other in the By
element direction. Measurements are made with the probe assembly in the standard orientation,
where the o¤set is in the y-direction, and also in a rotated orientation, where the o¤set is in the
x-direction. We now consider the e¤ect of angle errors when the probe assembly is rotated.
When the probe assembly is rotated, each Hall element has its sensitivity direction rotated by 90

degrees. The rotation is an overall roll by �90�. The resulting element sensitivity directions are

bm = RR(�90�) �R � bn (15)

where R � bn is the element sensitive direction after angle errors are applied. In matrix form, the
measured �elds are

Bm = B
TRR(�90�)Rn (16)

We expand BTRR(�90�) to get

BTRR(�90�) =
�
Bx By Bz

�0@ 0 1 0
�1 0 0
0 0 1

1A (17)

=
�
�By Bx Bz

�
(18)

We �nd that the measured �elds from each element have the same form as when the probe o¤set is
vertical, but with �By replacing Bx, and Bx replacing By. We �nd

Bxm = cos(�xY ) cos(�xR) (�By) + sin(�xR)Bx + sin(�xY )Bz (19)

Bym = � sin(�yR) (�By) + cos(�yP ) cos(�yR)Bx � sin(�yP )Bz (20)

Bzm = � sin(�zY ) (�By) + sin(�zP )Bx + cos(�zY ) cos(�zP )Bz (21)
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where Bxm is the �eld measured by the x-sensor, etc.
We can put the equations for the measured �elds with the probe assembly rotated in matrix form

to summarize the results.0@ Bxm
Bym
Bzm

1A =

0@ cos(�xY ) cos(�xR) sin(�xR) sin(�xY )
� sin(�yR) cos(�yP ) cos(�yR) � sin(�yP )
� sin(�zY ) sin(�zP ) cos(�zY ) cos(�zP )

1A0@ �By
Bx
Bz

1A (22)

where Bxm is the �eld measured by the x-sensor, Bym is the �eld measured by the y-sensor, and
Bzm is the �eld measured by the z-sensor.

3 Hall Element Angle Error Calibrations

3.1 Bx Calibration Magnet

Suppose we put the Hall probe assembly in a calibration magnet with only Bx. In this case, when
the probe o¤set is in the y-direction, we �nd0@ Bxm

Bym
Bzm

1A =

0@ cos(�xY ) cos(�xR)
� sin(�yR)
� sin(�zY )

1ABx (23)

The measured �eld from the y-sensor gives

�yR = �Bym=Bx (24)

for small angles. The measured �eld from the z-sensor gives

�zY = �Bzm=Bx (25)

for small angles.
If we rotate the probe so the o¤set is in the x-direction, we �nd0@ Bxm

Bym
Bzm

1A =

0@ sin(�xR)
cos(�yP ) cos(�yR)

sin(�zP )

1ABx (26)

The measured �eld from the x-sensor gives

�xR = Bxm=Bx (27)

for small angles. The measured �eld from the z-sensor gives

�zP = Bzm=Bx (28)

for small angles.

3.2 By Calibration Magnet

Suppose we put the Hall probe assembly in a calibration magnet with only By. In this case, when
the probe o¤set is in the y-direction, we �nd0@ Bxm

Bym
Bzm

1A =

0@ sin(�xR)
cos(�yP ) cos(�yR)

sin(�zP )

1ABy (29)
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The measured �eld from the x-sensor gives

�xR = Bxm=By (30)

for small angles. The measured �eld from the z-sensor gives

�zP = Bzm=By (31)

for small angles.
If we rotate the probe so the o¤set is in the x-direction, we �nd0@ Bxm

Bym
Bzm

1A =

0@ cos(�xY ) cos(�xR)
� sin(�yR)
� sin(�zY )

1A (�By) (32)

The measured �eld from the y-sensor gives

�yR = Bym=By (33)

for small angles. The measured �eld from the z-sensor gives

�zY = Bzm=By (34)

for small angles.

3.3 Bz Calibration Magnet

Suppose we put the Hall probe assembly in a calibration magnet with only Bz. In this case, when
the probe o¤set is in the y-direction, we �nd0@ Bxm

Bym
Bzm

1A =

0@ sin(�xY )
� sin(�yP )

cos(�zY ) cos(�zP )

1ABz (35)

The measured �eld from the x-sensor gives

�xY = Bxm=Bz (36)

for small angles. The measured �eld from the y-sensor gives

�yP = �Bym=Bz (37)

for small angles.
If we rotate the probe so the o¤set is in the x-direction, we �nd0@ Bxm

Bym
Bzm

1A =

0@ sin(�xY )
� sin(�yP )

cos(�zY ) cos(�zP )

1ABz (38)

The measured �eld from the x-sensor gives

�xY = Bxm=Bz (39)

for small angles. The measured �eld from the y-sensor gives

�yP = �Bym=Bz (40)

for small angles. These are the same formulas as without the probe o¤set rotation.
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3.4 Summary

The Hall element angle error calibration results are summarized in the following table:

Calibration Magnet Probe O¤set Vertical Probe O¤set Horizontal
Bx �yR = �Bym=Bx, �zY = �Bzm=Bx �xR = Bxm=Bx, �zP = Bzm=Bx
By �xR = Bxm=By, �zP = Bzm=By �yR = Bym=By, �zY = Bzm=By
Bz �xY = Bxm=Bz, �yP = �Bym=Bz �xY = Bxm=Bz, �yP = �Bym=Bz

Put another way, the following table indicates which calibration magnet measurement gives each
angle error. In this table V represents that the probe o¤set is vertical, and H represents that the
probe o¤set is horizontal.

Error Bx, V By, V Bz, V Bx, H By, H Bz, H
�xR = Bxm=By Bxm=Bx
�xY = Bxm=Bz Bxm=Bz
�yR = �Bym=Bx Bym=By
�yP = �Bym=Bz �Bym=Bz
�zP = Bzm=By Bzm=Bx
�zY = �Bzm=Bx Bzm=By

4 Hall Element Angle Error Corrections

We measure Bxm, Bym, and Bzm; and we want to know Bx, By, and Bz. We use equation 14. It
has the form Bm = TB. From the calibration, we know T , and from the measurements, we know
Bm. We �nd B as B = T�1Bm. In particular, we have0@ Bx

By
Bz

1A =

0@ cos(�xY ) cos(�xR) sin(�xR) sin(�xY )
� sin(�yR) cos(�yP ) cos(�yR) � sin(�yP )
� sin(�zY ) sin(�zP ) cos(�zY ) cos(�zP )

1A�10@ Bxm
Bym
Bzm

1A (41)

Similarly, when the probe o¤set is horizontal, we use equation 22 to �nd0@ �By
Bx
Bz

1A =

0@ cos(�xY ) cos(�xR) sin(�xR) sin(�xY )
� sin(�yR) cos(�yP ) cos(�yR) � sin(�yP )
� sin(�zY ) sin(�zP ) cos(�zY ) cos(�zP )

1A�10@ Bxm
Bym
Bzm

1A
(42)

5 Accuracy Requirements On The Hall Element Angle Cal-
ibrations

In order to determine the accuracy requirements on the Hall element angle calibrations, we return
to equation 14, which we reproduce below:0@ Bxm

Bym
Bzm

1A =

0@ cos(�xY ) cos(�xR) sin(�xR) sin(�xY )
� sin(�yR) cos(�yP ) cos(�yR) � sin(�yP )
� sin(�zY ) sin(�zP ) cos(�zY ) cos(�zP )

1A0@ Bx
By
Bz

1A
As noted above, this equation has the form Bm = TB. Suppose we make calibration errors �T .
We then think the transfer matrix is (T + �T ), where T is the matrix using the true angles. We
calculate B as Bcalc = (T + �T )

�1
Bm = (T + �T )

�1
TB. For small �T , working to �rst order we

7



�nd (T + �T )�1 =
�
I � T�1�T

�
T�1. We then �nd Bcalc '

�
I � T�1�T

�
T�1TB =

�
I � T�1�T

�
B.

The error we make from a calibration error is then �B = �T�1�T B. Since T ' I, to �rst order
�B = ��T B. This says that the error we make when calculating the �eld from the measurements
is the negative of the change in the measured �eld if the Hall element was rotated by the amount
of the calibration error. We will use this fact to study the e¤ect of the calibration errors. From
LCLS-TN-13-7, the following errors are important for calculating undulator parameters.
First consider the cos(�xY ) cos(�xR) term. These angles are not present when the probe is

calibrated with an NMR since the probe is rotated to maximize its signal before the NMR calibration.
This term must be present in order to accurately calculate the main �eld strengths and to determine
the K value. The angles are known from calibrating the other terms in the transfer matrix. The
corrections from the small angles are second order. Small errors in the angles, at the milliradian
level, will not a¤ect the cos(�xY ) cos(�xR) term. These conclusions also apply to the other diagonal
elements.
Consider the sin(�xR) term. A calibration error ��xR makes an error in Bxm equal to �Bxm =

��xRBy. In planar polarization, vertical �eld mode, By is typically 104 times Bx. As an upper
limit, we want the error on Bx to be smaller than Bx. We thus want ��xR < 10�4.
Consider the sin(�xY ) term. A calibration error ��xY makes an error in Bxm equal to �Bxm =

��xYBz. In planar polarization, vertical �eld mode, Bz is typically 100 times Bx. We want the
error on Bx to be smaller than Bx. We thus want ��xY < 10�2.
Consider the sin(�yR) term. A calibration error ��yR makes an error in Bym equal to �Bym =

��yRBx. In planar polarization, horizontal �eld mode, Bx is typically 104 times By. We want the
error on By to be smaller than By. We thus want ��yR < 10�4.
Consider the sin(�yP ) term. A calibration error ��yP makes an error in Bym equal to �Bym =

��yPBz. In planar polarization, horizontal �eld mode, Bz is typically 100 times By. We want the
error on By to be smaller than By. We thus want ��yP < 10�2.
Consider the sin(�zY ) term. A calibration error ��zY makes an error in Bzm equal to �Bzm =

��zYBx. In the circular polarization modes, Bx is typically 100 times Bz. We want the error on
Bz to be smaller than Bz. We thus want ��zY < 10�2.
Consider the sin(�zP ) term. A calibration error ��zP makes an error in Bzm equal to �Bzm =

��zPBy. In the circular polarization modes, By is typically 100 times Bz. We want the error on
Bz to be smaller than Bz. We thus want ��zP < 10�2.
We summarize these results in the following table. We replace the "< 10�2" with a maximum

value of 0:002. We replace the "< 10�4" with a maximum value of 5� 10�5 in order to set a limit
which is achievable.

Calibration Error Maximum Value (mrad)
��xR 0:05
��xY 2
��yR 0:05
��yP 2
��zY 2
��zP 2

6 Conclusion

This note showed the e¤ect of Hall element angles on the Hall probe measurements of the Delta
undulator. A prescription to measure the Hall element angles using calibration magnets was pre-
sented. Also presented was the equation to calculate the true �eld given the measured �eld and
the Hall element angles. Limits on the errors in the calibration of the Hall element angles were
presented.

Acknowledgements

8



I am grateful to Yurii Levashov for many discussions about this work.

9


