SLAC Traveler for LCLS Everson-Tesla Quadrupole Magnets

This traveler is intended to cover reception, preparation, mechanical fiducialization, and magnetic measurements of the Everson Tesla quadrupole magnets. Thirty of these magnets were ordered, 12 for the injector, 7 for the linac, 7 for the LTU, and four are spares.

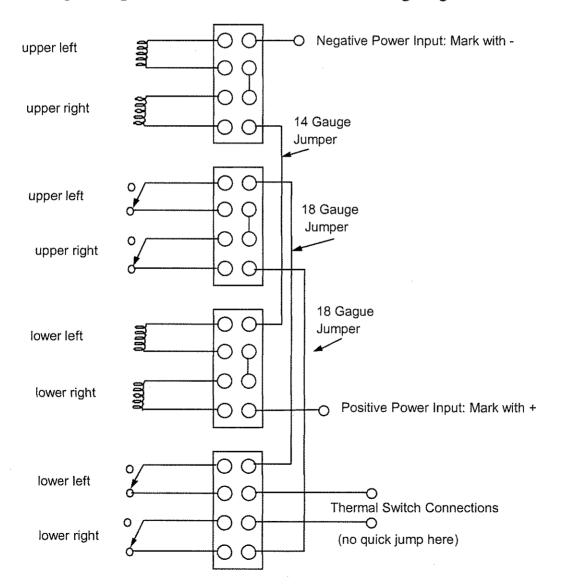
Receiving:

The following information is to be noted upon receipt of the magnets by the SLAC MFD group:

Received by	Jedo 1	name
Date received	9/23/2007	mm/dd/yy
SLAC barcode number:		# 408 -
SLAC drawing number:	SA-380-309-00r0	
Vendor serial number from magnet label:	001	#
SLAC approved electrical safety covers?	Y	Ý /N
SLAC approved lifting eyes?		(Ý)N
Shipping Damage?		Y/Ø
Vendor tests passed on magnet label?		(Y)N
Place Duplicate BarCode Sticker Here:	SLAC LCLS 200426	

All paper documentation that accompanies the magnets should be sent to Roger Carr, MS 102

Paperwork sent:	160501	Can	technician name
——————————————————————————————————————			- Maranina mariarata


Preparation:

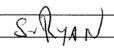
The following tasks are to be undertaken by the SLAC MFD group to prepare the magnets:

1) The mirror plates and standoffs are to be removed from these magnets. Please store these mirror plates and standoffs, and do not discard.

Mirror plates removed	Luis Juarez	technician name
<u> </u>		

- 2) A beam direction arrow, with text "beam direction", is to be affixed to the top and connector side of the magnet, preferably by stenciling or rubber stamp, or by sticker supplied by LCLS The arrow is to point away from the face of the magnet that has the coil bus wires. The coil bus wires are thus on the upstream side of the magnet. The positive and negative power leads are to be marked with '+' and '-' stickers, as shown in the wiring diagram.
- 3) A 14 gauge multistrand wire with red, non-teflon insulation is to be prepared with spade lugs and installed as shown in the wiring diagram below:

left and right refer to observer looking downstream, in the beam direction


14 Gauge Jumper installed

S. RYAN

installer name

4) Two 18 gauge multistrand wire jumpers with red, non-teflon insulation are to be prepared with spade lugs and installed as shown in the wiring diagram above.

18 Gauge Jumpers installed

installer name

5) The magnet is to be mounted a T-1 stage, oriented according to the correct beam direction, as shown in the photo:

QuicsTime** and a TIFF (Uncompressed) decompressor

This requirement is for the first 15 magnets; the next 9 may be mounted on various stages.

T	-1	Stag	e Ins	talled
---	----	------	-------	--------

Fiducialization:

Fiducialization may be done before or after magnetic measurements. The magnet is to be fiducialized by the CMM group. This will require the installation of removable tooling balls, location of the geometric axis of the pole tips of the magnet, and location of tooling balls with respect to the center of this geometric axis when the poles are aligned precisely at ± 45 degrees to horizontal and vertical axes.

CMM technician	KEITH	CABAN	10	4	oS	name	
LIDI of on line CM	M fidwaializa	tion data.		•			
URL of on-line CM Weborz www-gro	wet \Ow	tite Formar	Rienara	$\overline{\lambda}$	LCIS	OLLANZ) (LA	ioo Gaug
3	y mor tou	M. In Indicate	1-00/01	2_1		GUADS (CCC)	PH

Magnetic Measurements:

Upon receipt of the magnet, the following information should be recorded:

Date of arrival to Mag. Meas. group:	11/4/2005	mm/dd/yy
Responsible measurement operator name:	Scott Andersm	name

The magnetic measurements group is requested to perform the following tasks:

1) Verify that the magnets have mirror plates removed, jumpers correctly installed, and beam direction arrows put on. Also inspect magnet for any visible flaws and damage.

Incoming inspection OK	Scott Sh	technician name

2) Connect the magnet to a bipolar 12-A power supply, preferably an *MCOR12*. Use care in turning these supplies on and off to limit current spikes that may occur. Run the magnet up to 8 A for ~30 minutes to warm it up (record temperature).

Power supply type	MCORIZ	text
Magnet connected and warmed up	Scott Ann	technician name
Magnet temperature achieved	26.43	deg / C

3) Standardize the magnet, starting from 0 to +12 A, then through 3 full cycles from +12 A to -12 A and back up to +12 A, finally ending at -12 A (the *MCOR12* ramp rate is not controllable, but a flat-top pause time of 10 seconds is desired at each maximum and minimum current).

Magnet standardized	Suchen	technician name

4) Maintaining the history cycle, measure length integrated $\int Gdl$ with a calibrated rotating coil, from -12 A to +12 A in 1-A steps, including zero (25 'up' measurements).

Rotating Coil Designation	DeZ-54	name
Rotating coil radius	0.012603113	meters
Final data file name & run number	Strdat, rus	name and #

5) Still maintaining the history cycle, measure $\int Gdl$ with a calibrated rotating coil back down from +12 A to -12 A in 1-A steps, including zero (25 'down' measurements).

Timel data Classes C.	. 1		}	1 (/
Final data file name & ri	un number 📗	stodat. rus	1	name and #
			/	+
		7		

6) Measure field harmonics at -12, -6, +1, +6, and +12 A settings using a 1-inch or 0.8-inch diameter probe.

	24000	017 2000	ا (المحلي
Current (A)	Sextupole $\%$ (n = 3)	Dodecapole $\%$ (n = 6)	20-pole $\%$ (n = 10)
-12	0.18218	0.28115	0.02143
-6	0.16769	0.280/2	0.01915
+1	0.20563	0:27064	0.01479
+6	0.16689	0.27778	0.0/554
+12	0.18352	0.28088	0.01794

Harmonics file = hardat. rull < jul Klin

7) Measure the inductance and resistance of the full magnet:

Inductance of full magnet	24.9	mH @ 100 Hz
Resistance of full magnet	0.395	Ohm

8) Record integrated moments:

	Integraged	Max Integrated	Max Integrated	
	Quadrupole Gradient	Sextupole Error	Dodecaple Error	
	at 12 Amps	at ± 12 Amps	at $\pm 1\overline{2}$ Amps	
specification:	1.88 T	1%	1%	
measurement:	2.0338	0.18352	0.28115	

Date of completion of SLAC tests:	04/	26/2006	mm/dd/yyyy

URL of on-line magnetic measurement data:

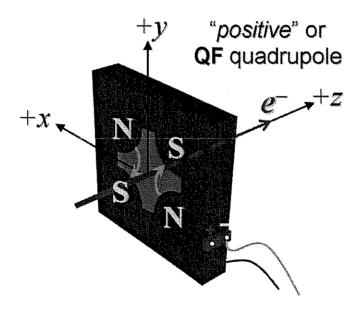
htp://www-group.slac.stanford.cdu/net/Mag Meas/MAGDATA/quad/ 000408/

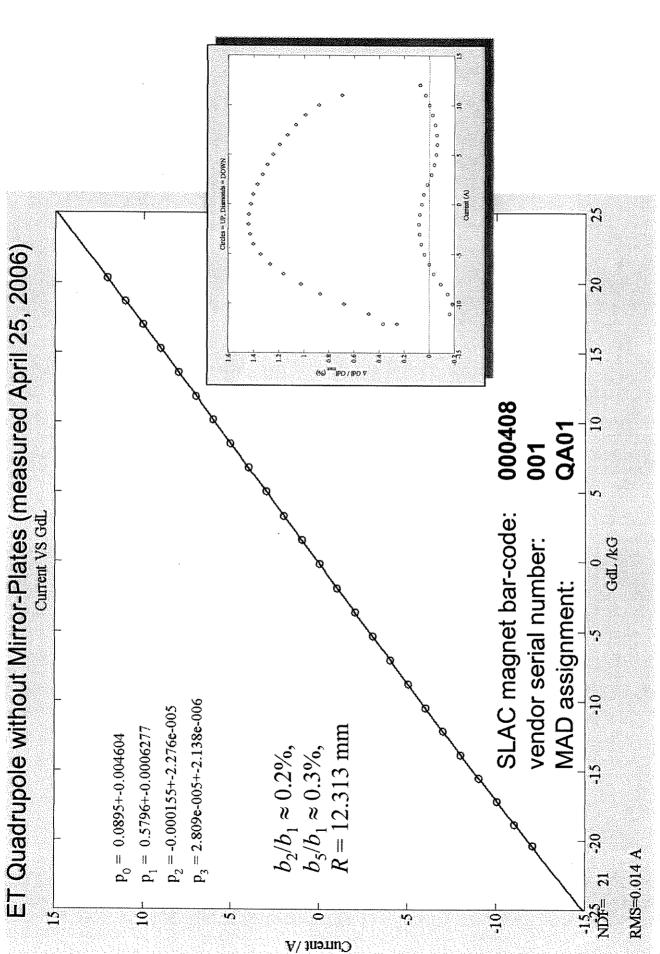
Upon completion of tests, send traveler to Paul Emma, ms 103

9 Approval and Assignment by Paul Emma:

Magnet accepted:	Vaul.	(Y)N
Assigned Location	QAØ1	Mad Deck Name

Upon completion, send traveler to Kathleen Ratcliffe at mailstop 18

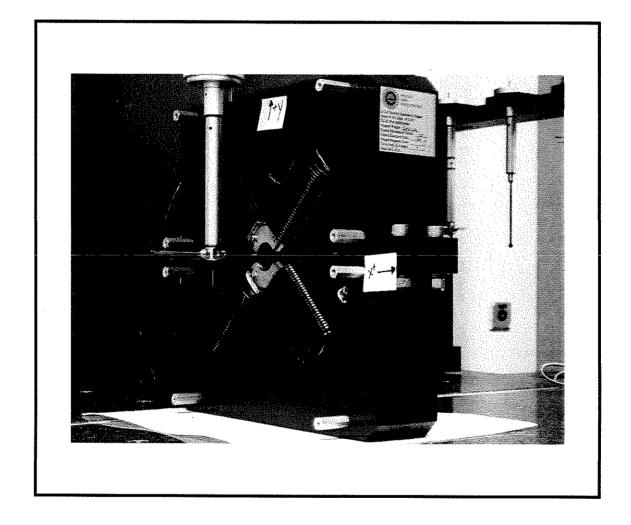

Reference Information:


In a 24 hour measurement of the first article of this magnet type at 10 Amps, the

temperature was found to rise to 31C over an ambient of 20C. See http://www-group.slac.stanford.edu/met/MagMeas/MAGDATA/LCLS/quad/QM-001/.

In a 36 hour test by Achim Wiedemann at 15.5 Amps, the temperature was found to rise to about 45 C from an ambient of 20C.

The magnet polarity is shown in the schematic diagram below:



http://www-group.slac.stanford.edu/met/MagMeas/MAGDATA/LCLS/quad/000408/strdat.ru3

LCLS Injector Quadrupole Magnet FIDUCIALIZATION REPORT

Inspector:

Responsible Engineer:

Date:

Work Order/Charge No.: Serial Number

Keith Caban

Roger Carr

Monday, October 03, 2005

N/A

000408

Part Set-up - Coordinate System Set-up

Planar Alignment

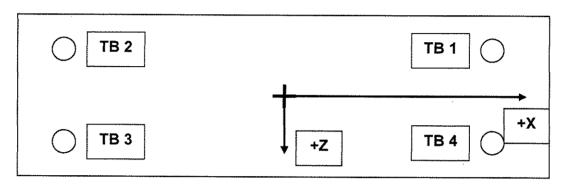
Mid-Plane of the magnet

Spatial Alignment

- A line on the top part of the magnet
 - +X goes towards (Magnet info Label)

"Z" Zero

· Mid-Plane of the magnet


"X" & "Y" Zero

- On both ends
 - o Tangent point of each radii (4 on each end, 8 total).
 - Create a line between diagonal tangent points creates 2 lines.
 - Intersect the lines.
 - o Creates a point on each end.
- Create a line of these 2 end points
 - o This is the "X" & "Y" Zero, and Beamline or "Z" Axis.

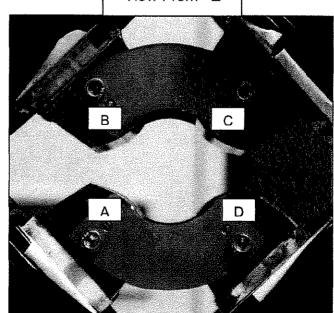
Tooling Ball Measurements/Locations

Top of magnet; view from "+Y"

Tooling Ball	FORM	DIAMETER	X	Υ	Z
TB 1	0.00077	0.49549	6.50043	8.87843	-1.24861
TB 2	0.00045	0.49802	-6.49959	8.87643	-1.24936
TB 3	0.00049	0.49688	-6.50041	8.87714	1.25042
TB 4	0.00066	0.49616	6.50140	8.87805	1.25143

Additional Requested Measurements

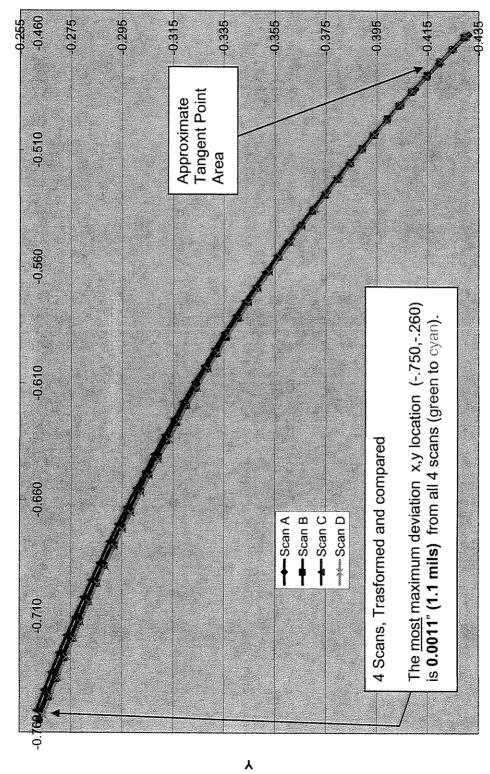
View From +Z


Tangent Point Straightness

- A. 0.00025
- B. 0.00021
- C. 0.00032
- D. 0.00049

Parallelism to Beamline

- A. 0.00114
- B. 0.00064
- C. 0.00129
- D. 0.00049


Distance of opposite Tangent Axis

A-C = 1.26016 (0.63009, 0.63007)

B-D = 1.25877 (0.62945, 0.62932)

Profile of Pole Comparisons

×