

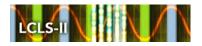
SLAC Magnetic Measurement Plan and Traveler for 165A Unipolar LCLS-II Quadrupoles of Type 2Q10 (SA-344-113-01, SA-344-113-21, SA-344-113-28, SA-375-156-50)

This traveler is intended to cover mechanical fiducialization and magnetic measurements of the 2Q10 quadrupole magnets needed for LCLS-II. There are a total of 36 of these magnets needed for the LCLS-II. There are 4 different configurations for this magnet, SA-344-113-01, SA-344-113-21, SA-344-113-28, SA-375-156-50. The table below gives the MAD names and polarities of the 165A unipolar 2Q10 quadrupoles.

MAD Name	Eng. Name	Drawing#	Barcode	Polarity
QDOG1	2Q10	SA-375-156-50		Р
QDOG2	2Q10	SA-375-156-50		N
QDOG3	2Q10	SA-375-156-50		Р
QDOG4	2Q10	SA-375-156-50		N
QDOG5	2Q10	SA-375-156-50		Р
QDOG6	2Q10	SA-375-156-50		N
QDOG7	2Q10	SA-375-156-50		Р
QDOG8	2Q10	SA-375-156-50		N
QL1P	2Q10	SA-344-113-01		Р
QL2P	2Q10	SA-344-113-01		N
QSP1H	2Q10	SA-344-113-01		Р
QSP1	2Q10	SA-344-113-01		Р
QSP2	2Q10	SA-344-113-01		N
QSP4H	2Q10	SA-344-113-01		N
QSP5H	2Q10	SA-344-113-01		Р
QSP6H	2Q10	SA-344-113-01		N
QSP4S	2Q10	SA-344-113-01		N
QSP1D	2Q10	SA-344-113-01		N
QSP2D	2Q10	SA-344-113-01		Р

QSP5S	2Q10	SA-344-113-01		Р
QSP8H	2Q10	SA-344-113-01		N
QSP6S	2Q10	SA-344-113-01		N
QSP9H	2Q10	SA-344-113-28		Р
QSP10H	2Q10	SA-344-113-28		N
QSP13H	2Q10	SA-344-113-28		Р
QDL11	2Q10	SA-344-113-28		Р
QDL12	2Q10	SA-344-113-28		N
QDL13	2Q10	SA-344-113-28		Р
QDL14	2Q10	SA-344-113-28		N
QDL15	2Q10	SA-344-113-28		Р
QDL16	2Q10	SA-344-113-28		N
QDL17	2Q10	SA-344-113-28		Р
QDL18	2Q10	SA-344-113-28		N
QDL19	2Q10	SA-344-113-28	4186	Р
QUE1B	2Q10	SA-344-113-21		N
QUE2B	2Q10	SA-344-113-21		Р

Receiving:


The following information is to be noted upon receipt of the magnets by the SLAC MFD group:

Received by (MMG initials):	SDA
Date received (dd-mm-yyyy):	12/3/2018
SLAC barcode number:	4186
Vendor serial number on the magnet:	27

Preparation:

A beam direction arrow, with text "beam direction", is to be applied to the top and/or connector side of the magnet with a sticker supplied by LCLS-II (J. Amann will determine the direction).

Beam-direction arrow in place (initials):	SDA
---	-----

Fiducialization:

Fiducialization may be done before or after magnetic measurements. The magnet is to be fiducialized by the CMM group. This will require the installation of removable tooling balls, location of the geometric axis of the poles of the magnet, and location of tooling balls with respect to the center of this geometric axis when the poles are aligned precisely horizontal.

CMM technician (initials):	KC
----------------------------	----

URL of on-line CMM fiducialization data (please modify or correct if necessary):

http://www-group.slac.stanford.edu/met/MagMeas/MAGDATA/LCLS-II/Fiducial%20Reports/4186_Fiducial_Report.pdf

Magnetic Measurements:

Enter URL of on-line magnetic measurements data (please modify or correct if necessary):

http://www-group.slac.stanford.edu/met/MagMeas/MAGDATA/LCLS-II/Quad/4186

1) Determine the connection polarity (with main supply outputting positive current) which produces a "positive" field polarity and "negative" field polarity as shown below:

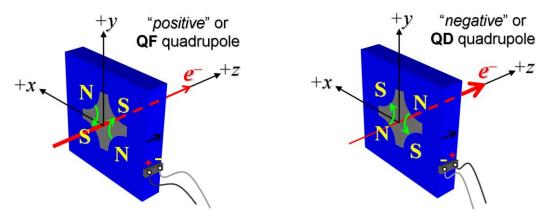
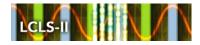



Figure 1. Polarity convention for magnets having "positive" (left) and "negative" (right) polarities.

2) Mark the polarity near the magnet leads with clear "+" and "-" labels as shown above.

Magnet polarity chosen from Fig. 1 is (P or N):	Р
---	---

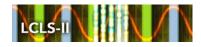
 Connect the magnet to the LCW supply. At a deltaP of ~91 psi per circuit, the total magnet flow should be 0.6gpm. Record the actual deltaP required to achieve a total flow rate 0.6gpm below.

Record total flow rate and pressure. 0.69 gpm @114 psi

- 4) Connect the magnet terminals in the correct polarity as established above, to a unipolar power supply with maximum current $I \ge 165$ A.
- 5) Run the magnet up to 165 A for \sim 30 minutes to warm it up (record temperature).

LCW delta T (°C)	11.3 °C
Ambient temperature (°C):	20.8 °C
Final magnet steel temperature (°C):	31.9 °C

6) Standardize the magnet, starting from zero to 165 A and back to zero, through three full cycles, finally ending at zero, with a flat-top pause time (at both 0 and 165 A) of 10 seconds. Use a three liner ramp rate of 20 A/sec, if possible, and record the ramp rate used.


Standardization complete (initials):	SDA
Ramp rate used (A/sec):	20 A/sec

7) If the power supply can be run as low as 2 A with <10-mA (0.5%) rms current regulation, then measure $\int Gdl$ from 0 to 165 A following the current range step sizes given in the table below.

Current Range	Step Size
0 to 20 A	2-A
20 to 140 A	20-A
140 to 165 A	5-A

Filename & run number of $\int Gdl$ up & down data:Strdat.ru1, strplt.ru1

8) For all magnets, with rotating coil, measure the magnet harmonics at 20, 40, 80, 165 A current setting. Multipole values should be given as a percentage of the quadrupole moment evaluated at the probe radius.

Filename & run number of harmonic data:	Hardat.ru1, harplt.ru1
Probe radius used for harmonics (cm):	1.95965
Rotating Coil Designation (Name)	48BC1.6

9) Confirm the pole-tip field using a Hall probe at an excitation current of 165 A.

Hall probe pole-tip field at 165 A (mean of 4 poles):	0.487 +/- 0.006 T @ 165.044 A
---	-------------------------------

10) For one magnet only, perform a final thermal test. Run the current up to 165 A. Measure the magnet temperature after it stabilizes (2-4 hours?). Record the temperature below.

LCW delta T (°C)	Measurement performed on 4187
Ambient temperature (°C):	Measurement performed on 4187
Final magnet steel temperature (°C):	Measurement performed on 4187

11) Measure the inductance and resistance of the magnet:

Inductance of coil (mH):	4.669 mH
Resistance of coil (Ohms):	0.1001 Ohm
Magnet temperature in degrees C	18.5 °C

12) Upon completion of tests, email URL of on-line data to Mark Woodley. Mark Woodley will determine if the magnet is accepted. Upon acceptance of magnet, analysis data will be placed in on-line data folder.

Magnet accepted and Analysis file(s) put into on-line	SDA
data folder (initials):	
Assigned beamline location (MAD-deck name):	QDL19