

HXU-013

LCLS-II HXU Measurement Results

Serial number from manufacturers label:	HXU-013
---	---------

Measurement Procedure:

The measurements have been carried out after the undulator segment had been fully tuned according to the "LCLS-II Undulator Test Plan" (LCLS-TN-17-1).

General Hall Probe Scan Evaluation Parameters				
Undulator Temperature (should be 20.0)	20.0 ± 0.1 °	°C		
First core pole $\#$	8			
Last core pole $\#$	253			
Tuning Gap	9.000 r	nm		
Evaluation of Hall Probe Scans at Commissioning Gap				
Commissioning Gap Temperature (should be 20.0)	20.0 ± 0.1	$^{\circ}\mathrm{C}$		
$rms\left(B_{pk} /\langle B_{pk} ight)-1 ight)$	0.0021			
$K_{\rm eff}$ at Commissioning Gap (should be 2.3400)	2.3403			
Comissioning Gap	7.960	mm		
$I1X$ (over 4.012667 m) (should be within $\pm 40)$	12	$\mu { m Tm}$		
$I2X$ (over 4.012667 m) (should be within $\pm 150)$	7	μTm^2		
$I1Y$ (over 4.012667 m) (should be within ± 40)	-9	$\mu { m Tm}$		
$I2Y$ (over 4.012667 m) (should be within ± 150)	-18	μTm^2		
Phase Shake (rms phase fluctuations over core poles (< 4.0)	1.2	$\operatorname{degXray}$		
Cell Phase Advance (over 4.012667 m)	$48598.6(135 \times 360 - 1.5)$) degXray		
Undulator Entrance Phase ¹	$2249.2~(25{ imes}90{-}0.8)$	$\operatorname{degXray}$		
Undulator Exit $Phase^2$	2249.1 $(25 \times 90 - 0.9)$	$\operatorname{degXray}$		

¹Phase advance from cell start (undulator center -2.006334 m) to center of physical pole 8.

²Phase advance from physical pole 253 to cell end (undulator center +2.006334 m).

HXU-013

Undulator Encoder Settings

USGapEncoderOffset	40.6103
DSGapEncoderOffset	40.3521
USWLinearEncoder.AOFF	92.2458
DSWLinearEncoder.AOFF	91.2727
USALinearEncoder.AOFF	92.5728
DSALinearEncoder.AOFF	92.0169

Undulator Load Cell Readings at Tuning Gap (Gap Opening)

LC_DAL_FORCE	-198.2
LC_DAU_FORCE	-143.1
LC_DWL_FORCE	-257.1
LC_DWU_FORCE	-113.5
LC_UAL_FORCE	-219.2
LC_UAU_FORCE	-125.2
LC_UWL_FORCE	-168.0
LC_UWU_FORCE	-193.8

Undulator Load Cell Readings at 100 mm Gap (Gap Opening)

LC_DAL_FORCE	3.2
LC_DAU_FORCE	2.3
LC_DWL_FORCE	5.1
LC_DWU_FORCE	0.7
LC_UAL_FORCE	12.2
LC_UAL_FORCE	7.1
LC_UWL_FORCE	7.1
LC_UWU_FORCE	5.9

HXU-013

Evaluation of Hall Probe Scans: K_{eff} vs. gap

Plotted functions have been calculated from measured values openKeff (opengap) and closeKeff (closegap) using the following Matlab calculations:

Blue Stars: 1-openKeff ./ spline(opengap([1,2,[3:2:end]]),openKeff([1,2,[3:2:end]]),opengap) Green Stars: 1-closeKeff ./ spline(opengap([1,2,[3:2:end]]),openKeff([1,2,[3:2:end]]),closegap)

Plotted functions have been calculated from measured values openKeff (opengap) and closeKeff (closegap) using the following Matlab calculations:

Blue Stars:1-openKeff ./ spline(opengap([1,2,[3:2:end]]),openKeff([1,2,[3:2:end]]),opengap)Green Stars:1-closeKeff ./ spline(opengap([1,2,[3:2:end]]),openKeff([1,2,[3:2:end]]),closegap)

Evaluation of Hall Probe Scans: Phase Shake vs gap

Evaluation of Hall Probe Scans: K_{eff} vs x at Tuning Gap

Evaluation of Hall Probe Scans: $K_{\rm eff}$ vs Y at Tuning Gap

Long Coil Measurement of the On-Axis First Horizontal Field Integrals with +100 $\mu T{\cdot}m$ Integral Offset

Long Coil Measurement of the On-Axis First Horizontal Field Integrals

Long Coil Measurement of the On-Axis Second Horizontal Field Integrals with +100 $\mu T \cdot m$ \times 0.5 \times 4.012667 m Second Integral Offset

Long Coil Measurement of the On-Axis Second Horizontal Field Integrals

Long Coil Measurement of the On-Axis First Vertical Field Integrals

Long Coil Measurement of the On-Axis Second Vertical Field Integrals

Second Horizontal and Vertical Field Integrals Along Undulator Length at Commissioning Gap

Capacitive Sensor Arrangement

The following plots show the pole and magnet position measurements. The LBNL system has two backto-back capacitive probes on one probe holder. The x and y stages on the Kugler bench are positioned so that the probe is in the proper location for each of the 9 scan locations. For the data analysis, the average pole position in each scan is used as reference for the plotted pole and magnet positions. Note that for all plots, the first three and last three poles of the device are omitted since the measurement is not accurate due to end effects in the capacitance probe measurement.

G1 Capacitive Sensor Readings

G2 Capacitive Sensor Readings

G3 Capacitive Sensor Readings

G4 Capacitive Sensor Readings

Undulator Gap Measurement

Undulator Gap Difference

Drive Loads (Gap Opening)

Drive Load Differences (Gap Opening and Closing)

Strongback Forces (Gap Opening and Closing)

Strongback Force Differences (Gap Opening and Closing)

