

KEK, Tsukuba, Japan. 15 February 2008.

First data from the ATLAS Inner Detector FSI Alignment System

S. M. Gibson, <u>P. A. Coe</u>*, M. Dehchar, J. Fopma, D.F. Howell, R. B. Nickerson, G. Viehhauser

Particle Physics, University of Oxford, UK. *John Adams Institute for Accelerator Science ATLAS experiment, CERN.

Overview

- Motivation
 - ATLAS ID alignment
- Frequency Scanning Interferometry
 - On-detector grids.
 - Reminder of technique
 - System Overview
- Improved performance
 - Evacuated reference chamber
 - Super-Invar interferometers
 - Vernier etalons.
- Light distribution and read-out
 - Fibre splitter tree (planar lightwave circuits)
 - Multi-channel read-out system

• Status and outlook

Motivation: ATLAS Alignment Challenge

Gibson et al.

ATLAS at the Large Hadron Collider

Gibson et al.

Progress in the ATLAS cavern:

Gibson et al.

Inner detector installed at heart of ATLAS...

Gibson et al.

...and cabled for first LHC data!

Gibson et al.

ATLAS silicon alignment requirements:

Gibson et al.

Frequency Scanning Interferometry

• Challenge

- We need to monitor the 3D shape of an operational particle tracker at the micron level.
- Solution: Frequency Scanning Interferometry
 - A geodetic grid of length measurements between nodes attached to the SCT support structure.
 - All 842 grid line lengths are measured simultaneously using FSI to a precision of <1micron.

Semi Conductor Tracker Barrel

Gibson et al.

On-detector FSI System

Gibson et al.

On-detector FSI System

Gibson et al.

Benefits of FSI

• The FSI grid operates within the inaccessible, confined spaces and high radiation levels of ATLAS, where a conventional survey is not possible.

- The Grid Line Interferometers are measured remotely via optical fibres.
- A full grid measurement is repeated every ten minutes so that rapid shape changes can be monitored.
- FSI is sensitive to low spatial frequency modes of tracker distortion, which are under constrained with track based alignment methods
- Track alignment precision is improved by combining many different stable alignment periods, with FSI correcting for the interim shape changes.

Gibson et al.

Principle of FSI

FSI System Overview

G

Improved performance: Lasers & Reference Inteferometry System

Gibson et al.

FSI laser room at CERN

Two colour laser amplifier system

Gibson et al.

Two colour laser amplifier system

Phase locked choppers so only one laser illuminates system at any time

Gibson et al.

Frequency scanning with new system

Gibson et al.

Preliminary Results (2nm link)

RIS Vacuum chamber

This vacuum chamber houses the

Reference Interferometry System:

all grid lengths measured with respect to this stable reference interferometer length.

Why use a vacuum?¹

- 1. Reduces errors due to pressure differences between laser room / ATLAS cavern.
- 2. Eliminates systematic drift during scan due to refractive index changes / turbulence
- 3. Thermally isolates reference from surroundings to reduce changes in length.

Gibson et al.

Reference Interferometry System

piezo

- Super-invar rods
- Fibre collimators provides low M² beam.
- Super-invar / steel thermally compensating design to balance CTEs. $\Delta T(C_1L_1 C_2L_2) = 0.$
- Both interferometers have four-fibre read-out for instantaneous phase measurement.
- Long reference has piezo for phase stepping.

Vernier etalons

- The vacuum chamber contains a pair of Fabry Perot etalons with slightly different Free Spectral Ranges: 10.00GHz and 10.05Gz
- Each etalon produces a comb of peaks as the frequency is scanned.
- The FSRs were chosen to provide a beat pattern repeating over 2010GHz (Repeat cycle = N2 FSR-1 = N1 FSR2)
- This vernier scale allows frequency intervals between sub scans to be determined.

(Short) Reference Interferometer

Phase stepping of piezo mounted mirror

New: Four-fibre phase extraction

Four interference signals coupled simultaneously into four parallel fibres

Phase extraction and unwrapping

Advantages of new method:

- Instantaneous phase measurement.
- Not limited by piezo vibration rate.
- Permits much faster frequency scans.
- This reduces interferometer drift errors and improves the measurement precision.

Very new: Dual interferometer phase extraction

Gibson et al.

Very new: Direct length ratio measurement

Preliminary result:

(single laser only, short range $\Delta v=34$ GHz)

SR/LR length ratio, D/L = 0.2155274 +/- 0.000003

Equivalent to 3 μ m on SR length.

 Δv currently limited by laser mode hops.

Gibson et al.

Light distribution and Read out

Gibson et al.

Control and data acquisition

•

Laser Room, SR1

Gibson et al.

- 2 VME crates
 - Laser room: Control crate
 - control of lasers
 - 2 FROCs: for inteferometers, etalons, diagnostics + vacuum chamber pressure, temperature measurements.
 - USA15: Readout Crate
 - readout of 842 GLIs
- Optical link between crates to synchronise DAQ.
- Optical link runs in same ribbon cable as fibre delivering high power laser light to rack.
- Laser light is divided between 842 interferometers using a fibre splitter tree, based on Planar Lightwave Circuits.
- DAQ uses custom FSI Read Out Cards (FROCs), which each record 64 optical channels multiplexed to 32 electronic channels.

Commissioning the FSI Read-Out Cards

- 2006: cables to empty rack.
- June '07: Crate, and first FROC installed. Communication established via SBC.
- August '07 shipment: 6 FROCs + CNC card installed. Block transfer achieved.
- October '07 shipment: all 15 FROCs installed. Full data rate test successful: 65536 triggers (~4.5Mb per FROC).

13th FROC (!) had a broken trace in the multilayer board. Repaired in Oxford, now back at CERN

stor FSI alignment system

Fibre Splitter Tree Installation

- Purpose to split fibre coupled laser light between 842 interferometers.
- Tree built using Planar Lightwave Circuit technology (PLCs) rather than fused biconic couplers.
 - Fibre-like waveguides created using ion-exchange in glass.
 - 1x8, 1x16, 1x32 split multiplicity possible in single device.
 - Need far fewer devices with similar / better optical losses to couplers.
 - Compact form allows easier installation at rack.

 PLC chip was mode matched to specialist radiation tolerant ribbon fibre to reduce splice losses.

 Splitter tree made in 15 x 1U modules of fibre mixing matrices manufactured in Oxford over summer and shipped to CERN, in August and October. [1684 individual fibres routed].

Splitter tree modules in underground rack

•

Each module divides fibre coupled light from the lasers between up to 64 grid line interferometers on the SCT, and routes the return light to the read-out crate (one FROC per splitter module).

Gibson et al.

Splitter tree module in counting room rack

Status and outlook

- The FSI system is in place at CERN and the commissioning phase has started.
- Read-out system tested successfully with fast data transfer rate achieved.
- Four-fibre phase extraction technique developed to improve precision.
- Dual reference interferometers provide simultaneous phase extraction.
- First data indicate improved performance is possible using extended analysis techniques and frequency tuning capabilities of the new lasers.

Acknowledgements:

- Special thanks to technical staff from Oxford Physics Central Electronics and Mechanical Group, in particular: J. Brown, C. Evans, B. Finegan, F. Gannaway, M. Dawson, T. Handford, G. Hammett, M. Jones, P Lau, W. Lau, J. Lynn, R. Makin, R. Morton, M. Newport, L. Rainbow, R. Swift, M. Tacon.
- Research funded by PPARC / STFC UK.