Effects of Applying Distance Constraints within Measurement Networks

New River Kinematics

Scott Sandwith

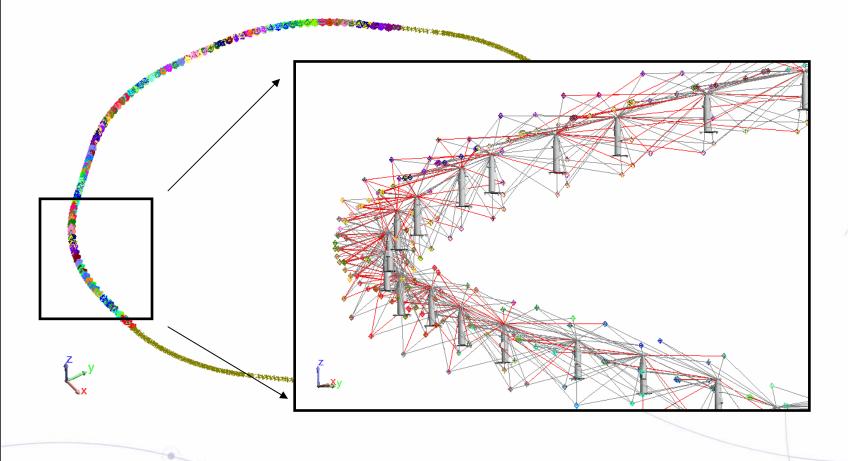
New River Kinematics

<u>scott@kinematics.com</u>

Engineered for Extreme Measures. International Workshop on Accelerator Alignment KEK, Tsukuba, Japan

Introduction

- Accelerator Ring Alignment Surveys
 - Instruments (Types and Stations)
 - Point/Observation Network
 - Network Adjustment
 - Control/Constraints (Instrument Performance, Environment)
 - Uncertainty Analysis Study Confidence
- Scale Constraints
 - Point to Point distance constraints (type & traceability)
 - Inner Ring and Outer Ring constraints
- Automating Accelerator Alignment Surveys
 - Custom Interface via Excel/ODBC Automation
- Conclusions


Accelerator Ring Alignment Surveys

International Workshop on Accelerator Alignment KEK, Tsukuba, Japan

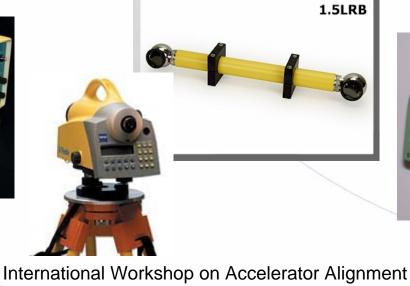
Ø

Ø

Accelerator Ring Alignment Surveys

Network Constraints...

Carlor and M


W BARRIE

Instruments (Types and Stations)

- Types:
 - $-3D \rightarrow$ Laser Trackers, Total Stations
 - 1D → Scale Bars, Laser Rail, Digital Levels, Mekometer

KEK, Tsukuba, Japan

Instrument Interfaces .

- New Instrument Interfaces
 - ScAlert
 - MV-200 Scanner Interface
 - Romer Sigma Arms & Arm Scanner
 - API Laser Rail
 - Sokkia Net1 Total Station
 - Faro Arm Scanner
 - T Scan Interface

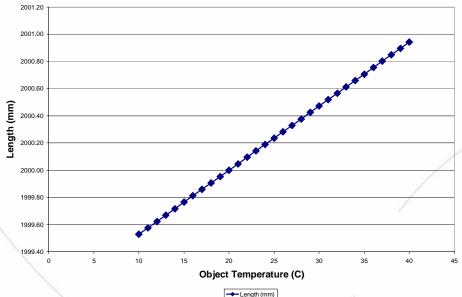
ScAlert

Scaling 3D Metrology to Ref Temperature

- Why Scale 3D Measurements?
 - Object dimension is dependent on temperature
 - Reference Temperature is 20° C (68° F)
 - Nominals are given at reference temperature
 - Objects are measured at temperatures other than at reference
- Scale object measurements from actual to reference temperature
 - Scale is dependent on:
 - Material Properties (CTE)
 - Temperature difference from reference
 - Object constraints

Thermal Length Compensation

Must scale measurements to reference temperature for comparison against nominals or between surveys


 $L_i = L_0(1 - \alpha \Delta T)$

where:

- L_i = actual length at temperature
- L_0 = calibrated length at reference temperature
- $\alpha = CTE$ for scale bar material (ppm/°C)
- ΔT = temperature delta between actual

and reference temperature ($^{\circ}C$)

Thermal Length Compensation (2 meter Alumimum Scale Bar)

Objects change length as temperatures changes

Process: 3D Measurement Traceability

- Survey scale is set with calibrated Temperature and CTE
 - Thermocouples to measure object temperature ... e.g., \pm 0.5° C (k = 2)
 - Published Material Type CTE e.g., \pm 3-5% (k = 2)
- Survey scale is checked (confirmed) against traceable lengths (NIST, PTB, NPL)
 - Bars calibrated with interferometer at reference temperature
 - Fixed Targets on Bars
 - Bar Material = Object Material
 - Length uncertainty set by lab

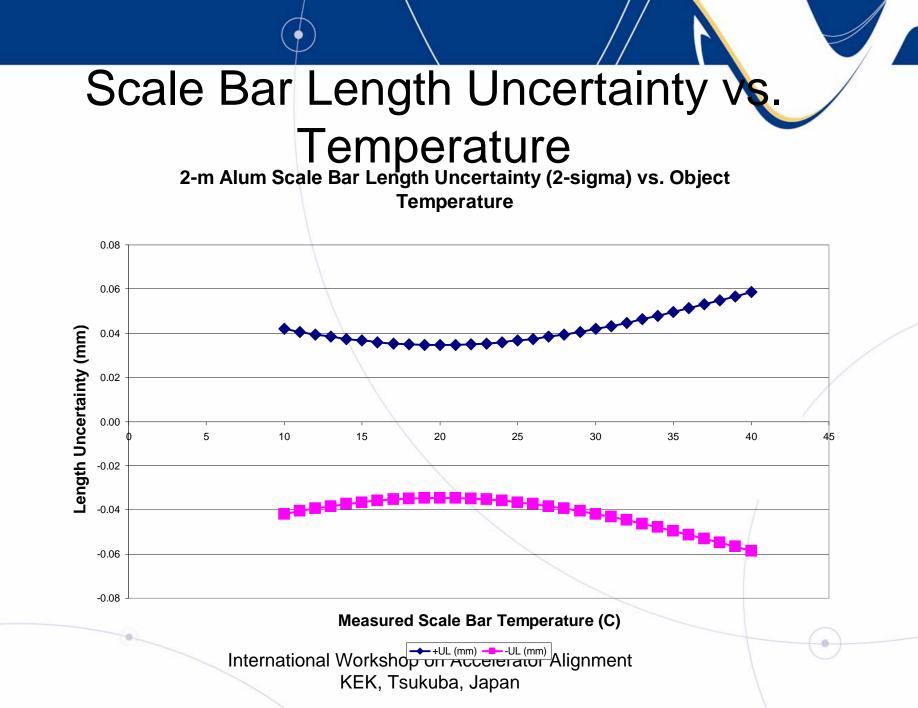
Input Component Uncertainties.

- Measurement uncertainty is higher
 - CTE uncertainty characterization is significant (> 5% of CTE)
 - Material temperature measurement uncertainty
 - Object temperature measurements one or a few observations
- Survey scale is set with uncertain temperature and CTE
- Process time is lost
 - Get measurements of scale bars to check to tight tolerances ... re-measure bars n times → find right temperature
- Setting scale with less precise process then having to one okawith higher precision KEK, Tsukuba, Japan

CTE Thermal Length Uncertainty

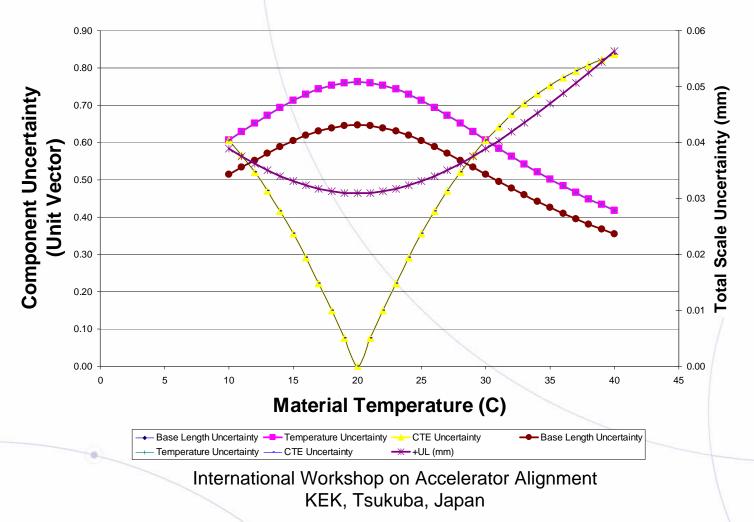
 $L_i = L_0 (1 - \alpha \Delta T)$ $f(L_0, \alpha, \Delta T) = L_i$ Uncertainty of L_i is a function of $L_0, \sigma_1, \alpha, \sigma_{\alpha}, \Delta T, \sigma_{\tau}$ Example : 2 meter Alum Scale Bar from 10° to $40^{\circ}C$ $L_0 = 2000 \,\mathrm{mm} \,\sigma_1 = 0.02 \,\mathrm{mm}$ $\Delta T = -10 \dots 20 \ ^{\circ}C \sigma_{\tau} = 0.5 \ ^{\circ}C$ $\alpha_{alum} = 23.8 \ ppm/^{\circ}C \ \sigma_{\alpha} = 5\% \alpha$

Propagation of Uncertainty


Model:
$$L_i = L_0(1 - \alpha \Delta T) = f(L_i)$$

$$U[f] = \mathbf{S}_{f} = \sqrt{\left(\frac{\delta f}{\delta L_{0}}\right)^{2} \sigma_{L}^{2} + \left(\frac{\delta f}{\delta \alpha}\right)^{2} \sigma_{\alpha}^{2} + \left(\frac{\delta f}{\delta \Delta T}\right)^{2} \sigma_{T}^{2}}$$

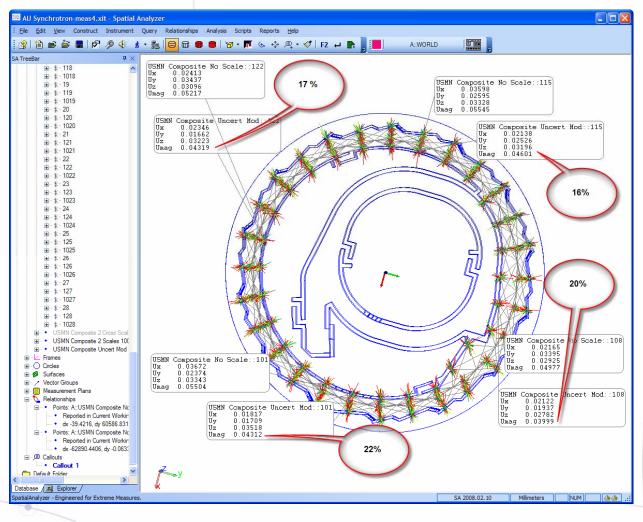
$$U[L_i] = \mathbf{s}_L = \sqrt{(1 - \alpha \Delta T)^2 \sigma_L^2 + (L_0 \Delta T)^2 \sigma_\alpha^2 + (L_0 \alpha)^2 \sigma_\tau^2}$$


- Formula for the variance between products
- Propagation of error approach combines estimates from individual auxiliary measurements`

Leo Goodman (1960). "On the Exact Variance of Products" in <u>Journal of the American Statistical Association</u>, December, 1960, pp. 708-713.

Scale Length Uncertainty Components

CTE Scaling Components of Unit Vector


Scale Length in USMN

- Integrate scale length into Uncertainty Field Analysis
 - -Scale length uncertainty from traceable certification
 - -Multiple bar positions and orientations
 - -Multiple stations
 - Local scale deformations due to environmental temperature gradient

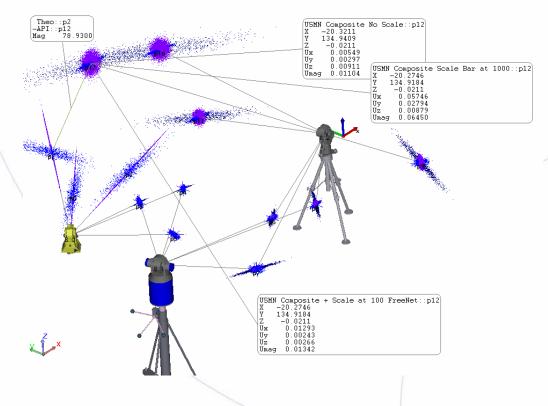
Monte-Carlo Uncertainty Analysis

- Uncertainty Field Analysis includes scale bar constraints
 - Report Only
 - As Constraints
 - Weighted based on length and published uncertainty from lab
- Monte-Carlo Uncertainty Analysis and Validation for network with modeled scale bar constraints...
 - Confirm an instruments or stations performance within a network against certified length
 - Network Target field uncertainty analysis with graphical and component output
- Automated outlier characterization (Ranking %) and possible elimination
- Shop floor users to consistently and effectively use this advanced optimization technique

Target Uncertainty Analysis w/ Length Constaints

International Workshop on Accelerator Alignment KEK, Tsukuba, Japan -6

Automation Mechanisms


- Measurement Plan support for Laser Rail
- Digital Level Integration
- Custom interfaces
 - ODBC \rightarrow Put/Get
 - Interactive Excel exchange (Variables)
- Open Instrument Interface
- Parallel Processing
 - Automatically use Multiple Processors when available

Conclusions ... Summary

- Scaling with certified lengths reduces measurement uncertainty
 - Reduced Uncertainty
 - Enhance Traceable Reporting
- Certified Length Standard are weighted in network optimization
- Instruments Uncertainty Analysis and Reports are against traceable length standards
- Target Uncertainty Field Analysis includes traceable length standards

Effects of Applying Distance Constraints within Measurement Networks

Questions

Scott Sandwith