The LiCAS Rapid Tunnel Reference Surveyor

The status after commissioning Armin Reichold for the LiCAS collaboration.

- Mission statement and design choices
- Purpose of the current RTRS prototype
- Progress and Status
 - construction, installation and commissioning
 - FSI → talk by John Dale
 - LSM → talk by Greg Moss
 - software
 - current prototype functionality
 - analysis and calibration → talk by Grzegorz Grzelak
- Lessons learned
- LiCAS-II
- Plans for the next year

- More than 100km of ILC beamlines need to be accurately aligned to produce ultra high luminosity
- We are developing a method for reference network Survey (LiCAS). This method should:
 - address all co-ordinates (vertical is most critical)
 - be highly accurate O(200µm over 600m vertical)
 - use Frequency Scanning Interferometry (FSI)
 - Laser straightness monitors (LSM)
 - both in vacuum
 - these are techniques with high intrinsic resolution avoiding long distance systematic errors from air refraction
 - be cost effective
 - use a fast robotic system which need little manpower and can be remotely operated, reducing cost of staff and off downtime
 - be readily calibrated and show good long term stability
 - have no moving parts in the sensing system (passive sensing unit)
 - capable of in-situ self calibration

RTRS Measurement Concept

Purpose of the RTRS prototype

- Provide an R&D platform with which we can
 - develop methods for robotic tunnel survey.
 - develop methods for in-situ calibration.
 - determine performance of each measurement technique in complex system outside laboratory environment.
 - determine performance of overall RTRS measurement procedure over distances up to 50m (tunnel length limit).
 - learn what minimal & optimised user system should be
- Prototype has functionality beyond that of "user system"

LiCAS Measurement Unit Assembly

- Assembly = VERY hard work for very long time under clean room conditions
- Oxford workshop and students essential (overtime, weekends, long hours, fast turnaround)

John did 30 days in the clean room with no day off!!

Thank you

John

Greg

Mike

Mike

Roy

Mark

Ron

Lee

David

Matt

Sigal

Yanmei

LSM Greg Moss

FSI John Dale

 Excellent Stability of long FSI lines, <100nm @ 4m over 30h

Software

Software Package	lines	of code	
Firmware	•	13008	
Simulgeo and simulations	•	30894	
Drive motor control	•	625	
LSM reconstruction & calib	•	86328	
FSI reconstruction & calib	:	47322	
Global reconstruction & cal	ib :	1125	
Temperature calibration	•	6000	
FSI file I/O	•	1897	
Stepper motor control	•	4615	
DAQ	•	72107	
GIACONDE and binary java I/	'O :	17604	
	. – – – – .		
Total	•	281525	
			_

■ That is 3.60 times "The lord of the rings" but provides a slightly less thrilling reading experience

9

Major sub-projects

- LSM software (Greg Moss)
 - was written over 3 years
 - 86,000 lines of code
 - in excess of 200 classes and global functions
 - ray tracing
 - multiple beam fitting
 - reconstruction
 - classical and self calibration
 - Monte-Carlo evaluation software
 - results presentation
- Reference interferometer calibration (John Dale)
 - during one year
 - took 700 GB of raw data
 - in 22,000 data runs
 - with major improvement to mechanics

Current prototype functionality

- RTRS = Large scale robotic sensing system
 - Robotics:
 - 1 ton moving mass
 - each measurement unit moves in 6D
 - 25 axis of motion
 - 39 CAN bus controlled stepper motors
 - 6 network controlled picco motors
 - 3 drive motors with 6 kW total power
 - 82 limit and proximity switches

- Sensing systems (data source rate):
 - 38 FSI interferometers (210 MB/sec)
 - 12 LSM cameras (298 MB/sec)
 - 3 wall marker cameras (78 MB/sec)
 - 96 calibrated temperature sensors
 - 3 computer controlled lasers
 - 12 axis of gravity reference tilt sensors

DAQ

- 204 MB data per stop
- 4 servers with 1.2 TB storage take data via:
- CAN, USB-II, RS485, TCP-IP, PCI

- Pre-Calibration
 - all sensing elements measured with CMM and smart scope
- Mechanics
 - vacuum system with > 100 accesses, joints and feedthroughs, many custom

- So far high level reconstruction uses Simulgeo
- Simulgeo = flexible general purpose tool but
 - lacks some features needed to describe proper calibration experiments (can't move an object) *)

^{*)} Simulgeo is still a good tool to check calibration constants and measure systematic errors. See talk by G. Grzelak

- We follow the Canadian and German schools (owls to athens)
 - D.E. Wells & Edward J. Krakiwsky
 - Hans Pelzer
 - Charles L. Lawson & Richard J. Hanson
- Brief reminder of the basic idea:
 - Measure observables F (FSI lengths, CCD co-ordinates, tilt angles)
 - F depend on unknowns X through non linear function F=F(X)
 - X consist of
 - internal unknowns X_i (calibration constants)
 - external unknowns X_e (wall marker co-ordinates)
 - We seek those X_{optimal} which describe our measurements best

$$\sum_{i, computed} \left[\mathbf{F}_{i, computed} \left(X_{optimal} \right) - \mathbf{F}_{i, observed} \right]^2 = \min$$

■ We find them iteratively using a linearised Gauss Markov model *)

$$F = A \cdot (X - X_0) + F_0$$
 where $A = \partial F / \partial X^{+}$ is called the design matrix

We can now analytically compute elements of the design matrix

*) Gauss Markov is the best linear estimator but there can be better non-linear estimators → Greg's Ray tracer + non-linear fit

+) ignore $\partial^2 F / \partial X^2$ although trying to find minimum 1

IWAA08, A. Reichold

Simplified design matrix for tunnel survey (3-car train)

- ignore for this example :
 - left band of calibration constants
 - all but external FSI measurements
- now X_e are
 - vectors from one wall marker to the next $r^{(n)}$
 - car positions vwrt. first
 - ullet car angles R_{fnl} \int car
- only measurements shown:
 - length d of external FSI lines $d^{(m)}$ train stop number [n] car number
 - (A^TPA) is tri-diagonal!

Lessons learned

RTRS

- LSM sees vibrations → need more rigid support and have to use image averaging
- Weight of unit, mover system and vacuum system is large and leads to vibration problems and low Eigenfrequencies → bootstrap our "diet" with a Carbon Fibre Unit
- LSM
 - Multiple reflections in cameras are relevant → next time remove cover plates from CCD chips
- FSI
 - internal and external FSI perform above expectations
 - internal RMS=O(100-200nm)
 - external RMS=O(2-3 μm)
 - reference interferometer design must account for calibration process
- We are more sensitive to calibration errors than expected (yes JP., you were right. We are slow learners but we DO learn.)
 - Systematic errors scale with length² (statistical error scales only with L^{3/2})
 - want longer train via large car separation to be less sensitive to errors. (4 cars with 25m car separation appears very safe)
 - want methods for cancellation of errors (up & over a'la laser tracker, see later)

- The 6D motion system
 - used to stay inside the dynamic range of internal and external sensors against the non-straightness of the rail
 - most complex system in RTRS
 - complex motor control software needed
 - major cost driver

6D Motion System

- Can we improve 6D motion system
 - hexapod movers
 - more rigid:
 - v_{res} =90 Hz (horz.)
 - $v_{res} = 500 \text{ Hz (vert.)}$
 - high load: 200 (50) kg vert. (horiz.)
 - fewer motors: 6 instead of 10
 - smaller: \varnothing =350 mm, H=330 mm
 - lighter: m=17 Kg
 - huge travel:
 - \pm 50mm (horz.) \pm 25 mm (vert.)
 - $\pm 15^{\circ} (\theta_{x}, \theta_{y}) \pm 30^{\circ} (\theta_{z})$
 - They are not exactly cheap though

LiCAS-II-a

Conceptual sketch of rigid beam mechanics for LiCAS-II

- made_from standard profiles (80x80)
- and Eliminating the 6D motion system
- lowest Eigenfrequency Eigenfrequency and manually align (e.g. shim) them into their dynamic range of O(5mm)
 - expand external FSI dynamic range by adding more filmersets cars
 - If power gets too low to serve all fibres simultaneously the underside

LiCAS-II Changes

LiCAS-II changes

- 1. a) rigid-beam mechanics or b) hexapod movers
- 2. dual laser scanning
- 3. Carbon Fibre measurement units
- 4. Fold cameras into cylindrical envelope
- 5. new reference interferometers *)
- 6. increased spacing between cars
- 7. >3 cars, preferably 6

Pros

- no [improved] 6D unit adjustment system (1.a [1.b])
- smaller (1.a, 1.b, 4.)
- lighter (1.a, 1.b, 3., 4.)
- easier to install (1.a, 1.b)
- more resistant to vibration (1.a, 1.b, 2.)
- less systematic errors (5., 4., 2.)
- higher resolution (2., 5.)
- vacuum system needs very little flexibility (1.a)
- no time needed for pre-alignment of train (1.a)
- cheaper (1.a)

Cons

- Carbon Fibre is more complex to engineer (3.)
- dual laser; need faster DAQ (expected ready for jest in June, 2.)
- needs better LSM collimation, may use Poisson-line instead (5., 64)
- longer LSM → wider beams → may need slightly larger CCDs (5.)
- may need fibre switching \text{\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\exitit{\$\text{\$\text{\$\exitin}}\$}\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex parts of external FSI (1.)
 - either less synchronous data
 - or search for the best external area first then take synchronous data
- Hard to scale to long length (1.)

*)

- 4-fibre readout measures instantaneous phase (see talk by P. Coe)
- more beam folding → shorter external dimensions
- liquid cooled/heated for ease of calibration
- both ends openable
- compensation length adjustable while in vacuum
- material CTE measured before construction → need less dynamic range in tuning mechanism

22

Plans for next year

- Operation of current prototype at DESY until Aug08
 - run calibration experiments
 - improve vibration isolation
 - perform multiple full tunnel surveys
 - use various RTRS configurations (swap units, rotate units)
 - use variable fraction of measurements in analysis to test redundancy
 - check systematics against laser trackers
 - operation with Helium instead of vacuum
 - study of different analysis and calibration methods (linear algebra)
- Build dual laser scanning FSI DAQ and test it on the RTRS
- Build new reference interferometers and compare them to old ones
- CANNOT build a second RTRS due to termination of ILC program in the UK → This is our last IWAA

