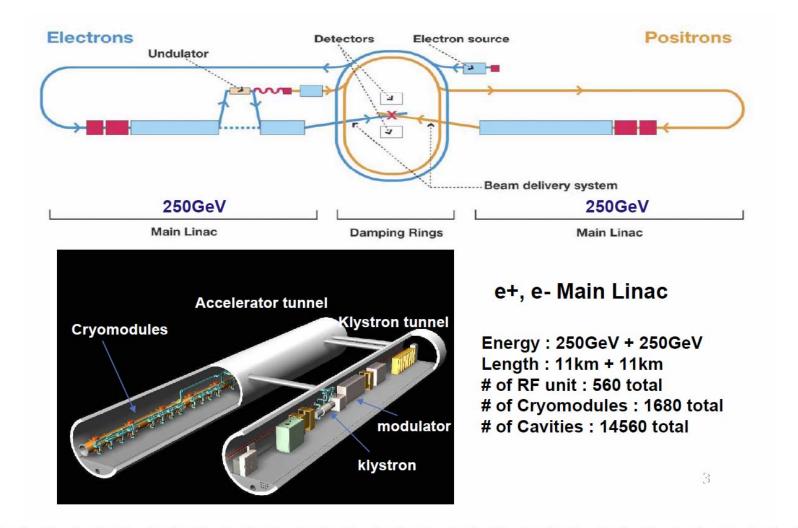
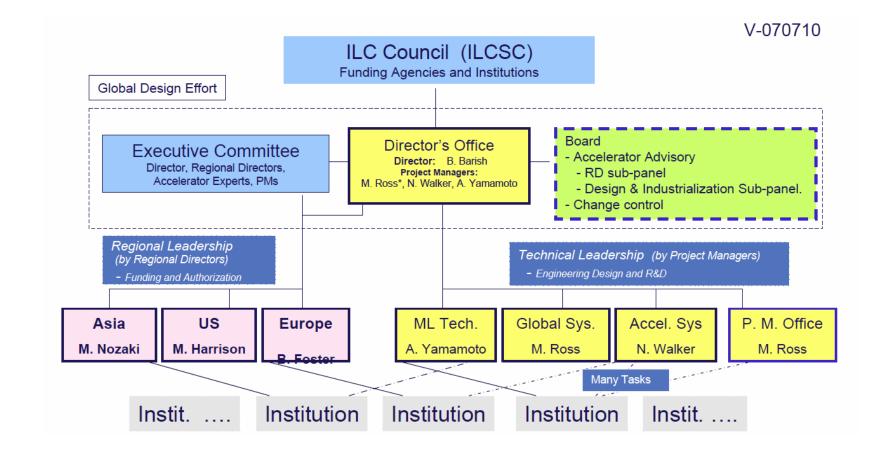

International Linear Collider (ILC) Status and Technical R&D Plan

ilr

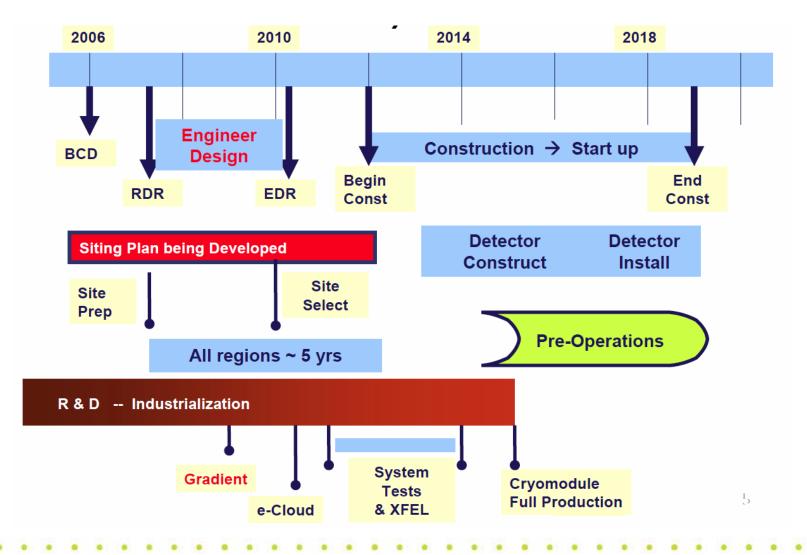

İİĹ


Akira Yamamoto KEK ILC-SCRF Project Manager

Feb. 13, 2008

ILC Layout Plan

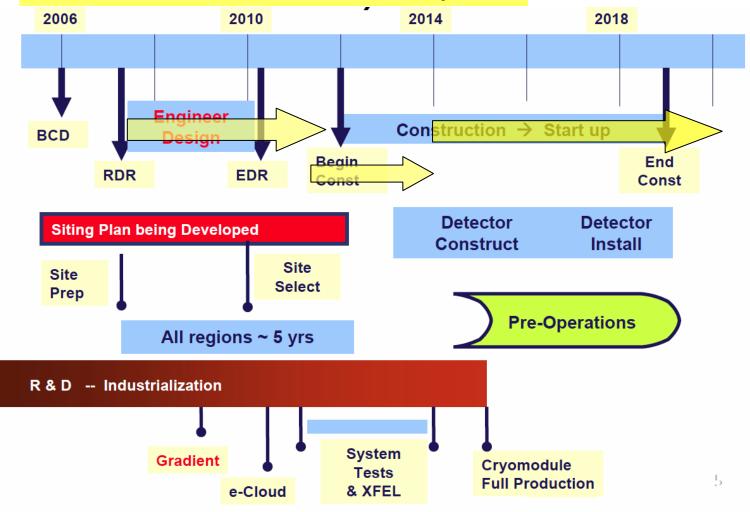
ir



ilc

General Plan (as of Oct., 2007)

ilc



General Plan (as of Feb., 2008)

EDR to be extended, for two years

ilr

iil

New Guideline for R&D (proposed)

• EDR with Two Phases (to be re-proposed):

- TDP1: technical feasibility by 2010

- Gradient (S0) in progress to reach 30 to 35 MV/m
- 8-series 9-cell cavity (S1) to reach 31.5 MV/m
 - Proof-of-Principle and System Engineering
- Cryomodule design with plug-compatible components,

– TDP2: technical credibility by 2012

- Gradient (S0) to reach 35 MV/m w/ yield 90 %
- One-RF unit and three CM operation with beam,

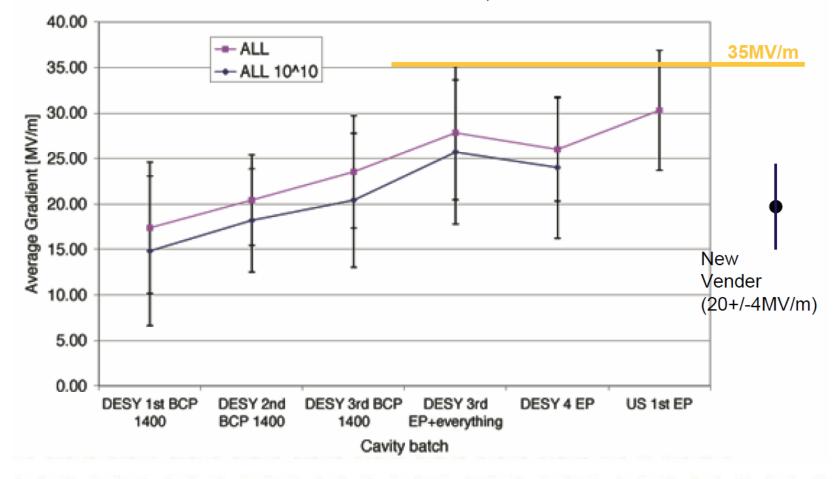
Scatter at DESY E_{acc} vs. time 45 BCP 40 . EP 10 per. Mov. Avg. (BCP) 35 10 per. Mov. Avg. (EP) 30 ²⁵ 20 20 20 15 10 5 0 Jan-05 Jan-06 Jan-95 Jan-97 Jan-00 Jan-01 Jan-02 Jan-98 .lan-03 05 95 00 1st 2nd 3rd 4th

ilC

4 Production Cycles with 26~33 cavities each; (total >100 cavities)

1st : no eddy-curr and BCP+1400 2~20MV/m by field emission and defect welding not matured

2nd : eddy-curr and BCP+1400 15~30MV/m by field emission


3rd : eddy-curr scan and 22: BCP+1400, 15~32MV/m 11: EP+1400(or800) 10~40MV/m limited by field emission and Q-disease, etc

4th : Eddy-cur scan and EP+800 15~35MV/m by field emission 5~10MV/m by Q-disease

ILC Global Design Effort

'Qualified' Vender Production, All Test Results

ilc

ILC Global Design Effort

Table 5.1: Projected number of superconducting RF cavities available in each region and the number of planned tests for the TD Phase (TDP1 is 2004 to mid-2010), and up to 2012.

A				,,				
Americas	FY06 (actual)	FY07 (actual)			TOTAL TDP1	FY11	FY12	
Cavity orders	22	12	2 0 10 10 52		52	10	10	
Total 'process and test' cycles		40	5	30	30	9 8	30	30
Asia	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10		FY11	FY12
Cavity orders	8	7	7 15		15	59	39	39
Total 'process and test' cycles		21	45	75	45	152	117	117
Europe	2004-06 (actual)	2007 (actual)	2008	2009	2010		2011	2012
Cavity orders	60*			838		8 9 8		
Total 'process and test' cycles		14	15	30	100	109	354	354
Global totals								
Global totals - cavity fabrication	90	19	15	873	25	1008	49	49
Global totals - cavity tests	0	75	65	135	175	359	501	501
* Thirty European cavities were ordered in 2004								

* Thirty European cavities were ordered in 2004.

As of Feb. 2008, from ILC R&D Plan for the Technical Design Phase, Release 1, Rev. 2

Gradient R&D (S0)

- Progress since technology choice
 - 27.5 MV/m w/ yield 90 % in 2006
 - 31.5 MV/m w/ yield 90 % in 2008
 - Based on sample population of 15 (nine-cell) cavities,
- General Goal

İİL

- Reach 35 MV/m w/ yield 50 % by 2010
 - Based on a well-defined sample of ~30-40 cavities from qualified vendors
 - The total number of cavity processing cycles will be ~360 (reduced from 540)
 - Includes setup of infrastructure, vendor qualification etc.
- Reach 35 MV/m w/ yield 90 % by 2012
 - Based on a well-defined sample of ~30-40 cavities from qualified vendors
 - At this time the total number of cavity processing cycles will be ~ 500

- Field emission greatly reduced with post-EP rinses
- Equator quench is a dominant limit PLAN:
- Kyoto U/KEK inspection camera and Tmap to identify and classify flaws
 - Tested on multi-cell; will work with single cell
 - Many flaws and features observed
- Expand and Perfect these instruments
- Goal: develop pre-VTS prediction system; provide feedback to fabrication / processing procedure
 - Reduce VTS time/cost and develop comprehensive inspection system

ILC Global Design Effort

.

ilc....

Gradient R&D - Expected

- 100K\$/cavity, 30 K\$/ process & test cycle,
- $\sim \frac{1}{2}$ test cycle per week, at the Cornell and JLab combined, in 2009-10
 - close to table numbers 30/year.
 - (3M for testing alone during the 2 years)
- Dividing by max. number of etch & test cycles allowed per cavity (~3?),
 - we would need 10 cavities/year.
- Use existing cavities for some of this, need about 1M/year for cavities.
 - development/maintenance effort must be included
- Bulk EP should be done by fabricator
 - cost effective and preserves our infrastructure
- Identifying the flaws in cavities in the 20 to 32 range that are limited by quench. (TTC)
 - relies on test / retest with tmap etc.
- Marginally viable with less than 10 cavities and less than 30 procedures.
- Key questions –

İİL

- Who pays for the diagnostics (internal viewer, tmapping hardware, contaminant sampling...)?
- Who develops? Mark C and TD group is interested; Fermilab focus will
- naturally shift to cryomodule.

Appendix: Goal of S1 in RDR

Ultimate Goal;

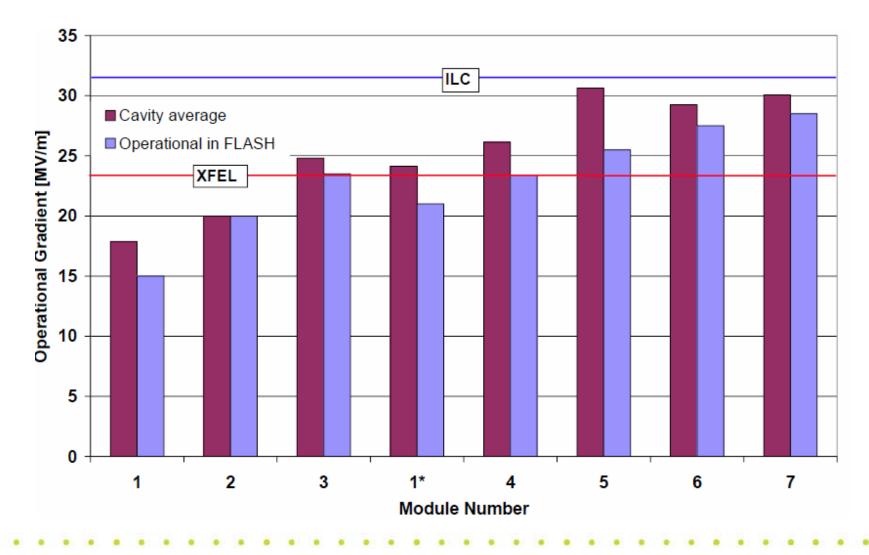
ilc

31.5MV/m@Q₀=1x10¹⁰ as operational gradient at least 3 cryomodules include fast tuner, etc

Intermediate goal: to achieve by single cryomodule with tweaking WG-config

Final goal: use of 'S0' passed cavities, operation of a few weeks

• Purpose

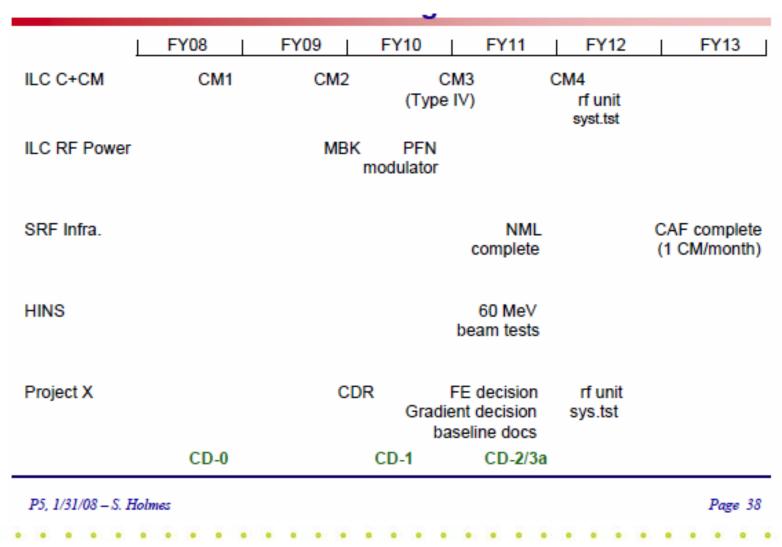

İİL

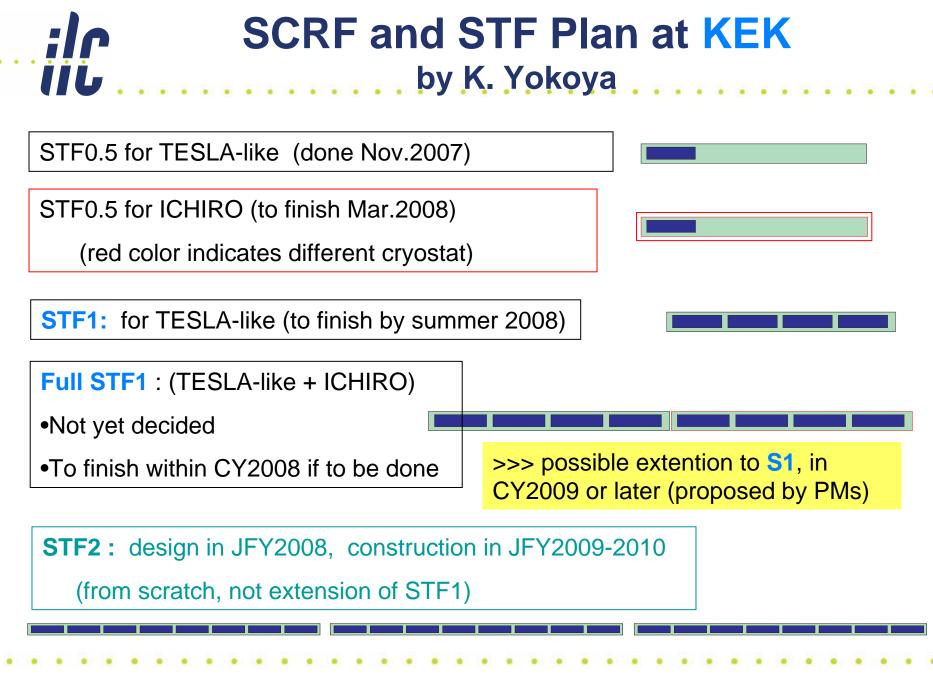
- E = 31.5 MV/m with system engineering (and beam)
 - With 8 x 9-cell cavities configuration
- General test facilities including Cryogenics, RF and the power distribution system, diagnostics, (and electron-beam) required

• Where?

- The primary plan at Femilab >> CM3 ~4 = Type-IV (S1)
- The secondary plan proposed (S1-global/international),
 - potentially at KEK (or DESY)
 - Qualified cavity units (cavity+vessel+tuner), couplers, quad., BPM to be gathered to the hosting lab.
- It may be organized as a global effort.
 - Qualified dressed-cavities to be globally prepared.

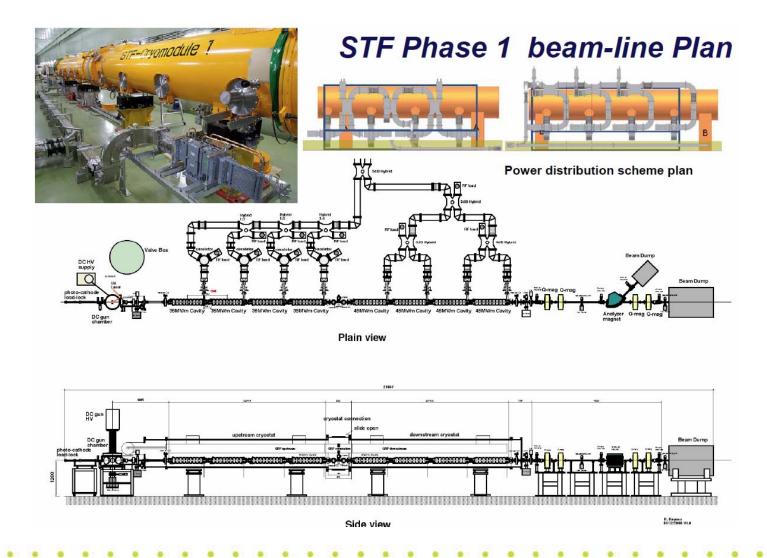
Progress of Cavity Performance with Cryomodules at DESY


ILC Global Design Effort

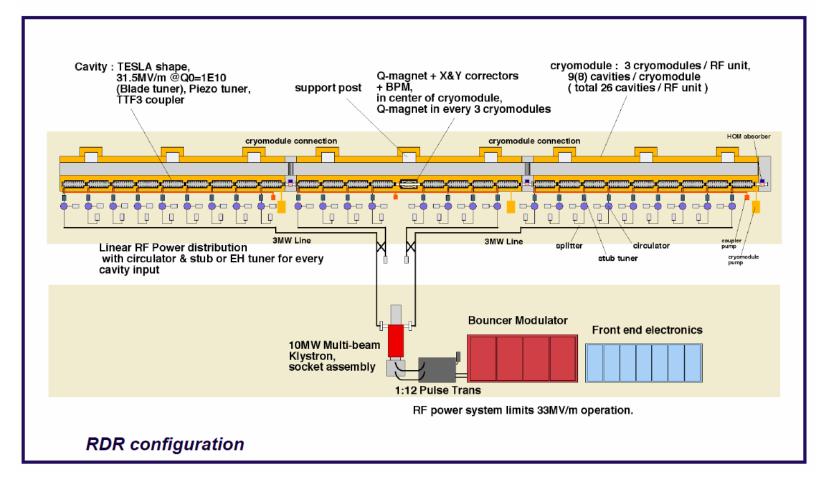

SCRF R&D Plan at Fermilab

given in a P5 talk by S. Holmes

ilr


İİL .

STF (1) at KEK


ilc

S2 Concept (one RF unit)

ILC Main Linac RF unit

ilc

ilc

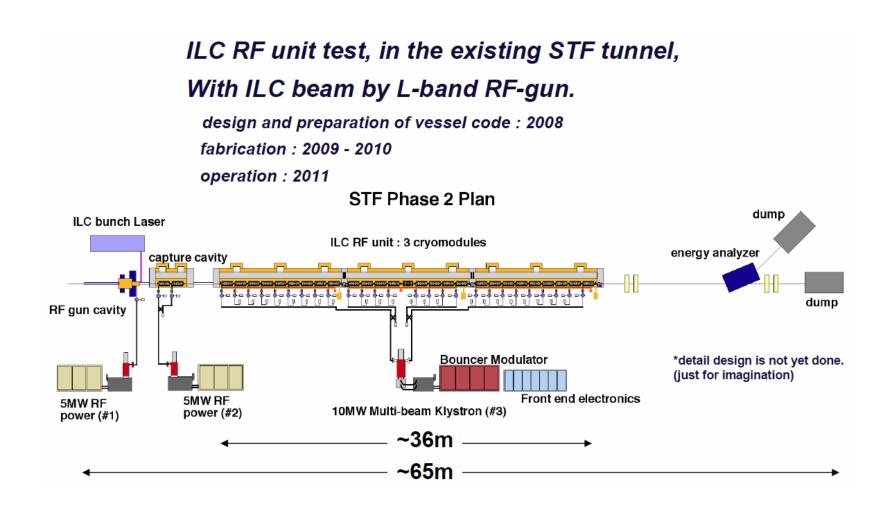
Possible Global R&D Plan

ilc

		C	Y08		CY1			CY12
					0			
EDR	TDP	1				TDP-II		
S0:	30							35
Cavity Gradient (MV/m)								(>90%)
KEK-STF-0.5a: 1 Tesla-like								
KEK-STF-0.5b: 1 LL								
KEK-STF1: 4 cavities								
S1-Global (AS-US-EU)				CM (4 _{AS} +2 _{US}	_S +2 _{EU})			
1 CM (4+2+2 cavities)				<31.5 MV/m>				
S2 & STF2: One RF unit & 3 CM with beam		de	sign	Fabricatio industries	n in	Assem at STF	Assembled and test at STF	
S1-Fermilab/US ILC-CM-3 or -4		(CM1	CM2	CM 3(Type-IV)		CM4

R&D Goals in EDR

- Cavity: Basic Performance (S0)
 - High-gradient 9-cell Cavity R & D for the preparation process & vertical test to achieve 35 MV/m at $Q_0 = 10^{10}$ with yield > 90% (> 80% at 1st test, and > 90 % after re-processing remaining 20%),
- Cavity: System Performance with Cryomodule (S1)
 - Cryomodules containing eight 9-cell, full-dressed cavities, achieving an average gradient of 31.5 MV/m ($Q_0 = 10^{10}$),
- Cryomodule
 - Optimum design and establish the technology with plug compatible interface and components.
- Cryogenics
 - Cost effective design of the integrated cryogenics system, both in terms of construction and operation;
- HLRF


İİL

- Cost effective design of the RF power and distribution system.
- Integration/Layout
 - Optimization of the cryomodule and component layout design with respect to beam dynamics issues

ilr

iiL

- ILC engineering design phase to be proceeded with
 - TDP-1: technical feasibility by 2010, and
 - TDP-2: technical credibility by 2012,
- Key technologies to be demonstrated are:
 - Beam acceleration field <31.5 MV/m>
 - with SCRF cavities associated with RF power distribution, cryogenics,
 - Beam handling
 - Superconducting magnets and diagnostics,
 - Alignment

ic

- static (10⁻¹ mm) and dynamic (< 100 nm)
- Thanks for expert's cooperation to meet these technical goals.

ILC Global Design Effort

.

ilc....

Cryomodule Design

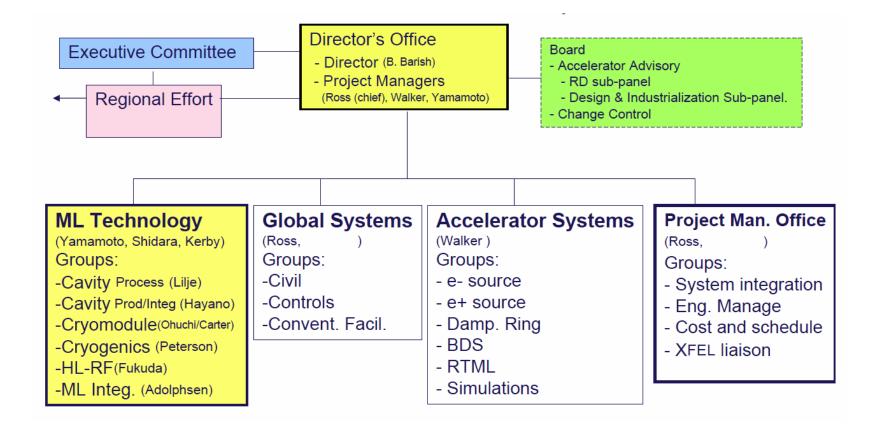
with plug-compatible components

•	CM with 6 modular sub-assemblies	Cost fraction
	 Cavity unit (cavity + helium vessel + tuner) 	64%
	 Coupler 	12%
	 Quad package (quad + corrector) 	4%
	- BPM	2%
	 Cold-mass (cold-piping) 	x/19%
	 Vacuum vessel 	y/19%

- **Plug-compatible**, Interface specifications (IS)
 - To be fixed at Fermilab meeting, in April, 2008
- Plug-compatible IS enables parallel development toward a single goal

backup

A possible plan at KEK-STF


STF-1 extension to meet S1 plan

:lr

- 2 x STF1 (2 x 4-series cavities) to become S1
- Re-use of vacuum vessels (w/ modification)
- Gather, globally, qualified cavities
 - Plug compatibility is essentially required,
- S1 test constraint in high pressure system operation (i.e. temporary test),
- The program may become feasible after the current STF-0.5 and STF-1 program at KEK,
 - JFY-09 and later, and before STF-2 assembly work at the KEK-STF site.

ILC Technical Coordination

ic

Complete the critical R&D

 as identified by the (R & D Board and), Prototype, DFM, Preproduction, and ..

Establish the base-line design,

- Verify the initial EDR base-line design parameters,
- Technologies to be chosen and to be demonstrated through pre-massproduction
- Learn industrialization

• Obtain the maximum benefit from the realized project

Proceed alternate design and development

- As technology back-up to achieve the ILC design goal,
 - with "Plug-compatible" concept, and
 - for maximizing performance/cost (value-engineering)

