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Outlook

• Idea of the multi-train overlapping measurements

• Opto-geometrical model of the sensing modules

• Simulation and reconstruction software:

– Analytical (matrix) error propagation

– Monte Carlo approach to error calculations

• Short ruler model (random walk algorithm)

• Results for statistical errors

• Results for systematic errors

• all numerical results for long LiCAS train
(4 cars, 25 m car-to-car distance, operting over 600 m tunnel section = 24 stops)

• Conclusions
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Multi train overlapping measurement
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• each train stop provides coordinates of N (=6) wall markers expressed in the local frame of the train

• overlapping measurements of each wall marker

• local measurements are combined to coincide on the same trajectory in the global tunnel frame

(simultaneous fit to all measurements)

• top view on two train
stops along the tun-
nel wall



G.G. Global LiCAS Simulation 4

Sensing modules of LiCAS cars

• Important components for the simulation (Laser Straightness Monitor, FSI lines):

– LSM: 1 laser line per train; 2 beam splitters, 4 CCD cameras per car

– Internal FSI: 6 laser lines, 6 retro-reflectors per car
(Internal FSI lines and LSM laser operates in vacuum pipe)

– External FSI: 6 laser lines per car, 1 wall marker in front of each car

– clinometer (not shown) for Rotz
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Simulgeo: Software used in the simulation
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• Script language for description of opto-

geometrical systems (light sources, CCD

detectors, distancemeters...)

• Mechanical correlations between objects

grouped in local frames

• ERROR PROPAGATION MODE:

Performs full error propagation

(N 2 matrix, very CPU consuming)

• RECONSTRUCTION MODE.

Solving the geometry of the system using

provided “experimental” measurements.

(Input from ray-tracer or real data).

Simulgeo: developed by L. Brunel at CERN

for the alignment of CMS muon chambers

• LIMITATION: Systematic errors (for example miscalibration)

are treated in the same way as statistical errors

• SOLUTION: Train MONTE CARLO simulation
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Train Monte Carlo: the algorithm

1. generate TRUE wall markers positions along the tunnel
(nominal values smeared by σ = 10 mm in X, Y, Z direction)

2. generate train “miscalibration pattern” for CCDs/FSI on each car

3. LOOP over “runs” (train journeys) along the tunnel

3a. LOOP over cars in the train

• generate car stops in front of wall markers
(smeared by σ = 10 mm (pos) , σ = 10 mrad (ang))

• transfer all coordinates of CCDs/FSI to the global (tunnel) frame

• generate measurements of sensing units using Ray Tracer and
TRUE geometry on input
(CCDs,FSI measurements smeared by resolution of σ = 1 µm)

4. RECONSTRUCT the system w.r.t. the unknown position/angles of cars and
wall markers using MISCALIBRATED geometry and smeared measurements

5. collect histograms, calculate statistics for RECONSTRUCTED-TRUE variables
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Miscalibrated train: egxample of “miscalibration pattern” for CCDs

• CCD positions/angles and FSI retro-reflectors/launch points
miscalibrated with Gaussian smearing

• example of CCD “miscalibration pattern” shown for σ = 1µm (pos)
(schematic view of 4 cars, 4 CCDs per car; nominal and distorted CCDs shown)

• as a result LSM (Laser Straightness Monitor) is no longer straight (!)

• ruler becomes “zigzag” (X direction, Y direction) with some mean curvature
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Train Monte Carlo: Wall Markers positions: REC-TRUE distribution

• distribution of (REC-TRUE) position for X,Y,Z co-ord. for 4 wall markers

• symmetric Gaussian shapes: RMS → statistical errors

• MEAN value shifted: → systematic errors (RESIDUA)
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Train Monte Carlo: Statistical errors: RMS of (REC-TRUE)

• assuming intrinsic resolutions:

– CCD: σCCD = 1 µm

– FSI: σFSI = 1 µm

• 10 Simulgeo runs, 4 cars, 25 m car-to-car distance
growth of transverse errors: ∼ n3/2

• open markers: Matrix calculation (analytic)
solid markers: Errors from Monte Carlo

A = RotX

B = RotY

C = RotZ
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Short ruler model (or random walk along the tunnel)
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• two sources of errors (2D case): position (off-set) and direction (angle)

• off-sets and angles are relative to the previous “ruler”
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n – wall marker number, l – effective length of the ruler (here: distance between cars),
errors: σα – angular, σxy – transverse, σz – longitudinal

• asymptotic behaviour of transverse errors: ∼ n3/2
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Random Walk model: trajectories, straight line fits

• repeating this procedure for many “numerical experiments”...

• trajectories generated for
Random Walk model using
parameters from the fit to
Simulgeo points
(X,Y ) direction

• points along trajectories are
very correlated (ie.: small
’oscillations’ observed)

• straight line fits to the Ran-
dom Walk paths for 600 m
tunnel section
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Random Walk Monte Carlo: residua of stat. errors

• statistical component of error budget well below specification:
σx = 500µm, σy = 200µm

• mean deviation from
straight line fits
(X,Y ) direction
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Train Monte Carlo: systematic errors (MEAN of REC-TRUE)

• assuming calibration precision:

– CCD: σCCD = 5 µm

– FSI: σFSI = 5 µm

• linear (∼ n) growth of angular errors
quadratic (∼ n2) growth of transverse errors

• examples of straight line fits for
two “miscalibration patterns”

A = RotX

B = RotY

C = RotZ
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Model of systematic errors for LiCAS train

∆ x

∆ x

∆ x

∆ x

L L
L

L

L

α
2α

3α
4α

• angular term:
σsyst

ang = L sin(α) + L sin(2α) + L sin(3α) + ... + L sin(nα)

σsyst
ang ≃ Lα(1 + 2 + 3 + ... + n) = Lαn(n + 1)/2 → n2 (quadratic !!)

• translation term:
σsyst

tr = n∆x (linear)

• full formulae:
σsyst

tot = Lαn(n + 1)/2 + n∆x

where L is the “effective” ruler length (car-to-car distance)
α and ∆x should be extracted from the full Simulgeo model



G.G. Global LiCAS Simulation 15

Train Monte Carlo: systematic errors: RMS of RESIDUA

• RMS of residua distribution for 10 different “miscalibration patterns”

• calibration precision: CCD: σCCD = 1 µm; FSI: σFSI = 1 µm

• well below specification: σx = 500µm, σy = 200µm
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Train Monte Carlo: systematic errors: RMS of RESIDUA

• RMS of residua distribution for 10 different “miscalibration patterns”

• calibration precision: CCD: σCCD = 5 µm; FSI: σFSI = 5 µm

• reaching specification: σx = 500µm, σy = 200µm
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Conclusions/Plans

• LiCAS technology is capable of surveying the ILC tunnel
to desired accuracy: O(200) µm over 600 m tunnel section

• Realistic model of error propagation for LiCAS train was developed
(both statistical and systematic errors)

• Simulation and reconstruction software using above model is ready,
→ can be used to test/validate different train concepts

• LiCAS train base line design has changed from 6 cars 4.5 m car-to-car
distance to 4 cars 25 m car-to-car distance

• Next plans:

– incorporate the systematic errors to the licas sim package
generating the input for the ILC beam dynamics simulations

– test the reconstruction software on real data from the LiCAS
train prototype operating now at DESY
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BACKUP Polts

• Backup plots ...
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Train Monte Carlo: Statistical errors (cont.)

• open markers: Matrix calculation (analytic)
solid markers: Errors from Monte Carlo

• disagreement sometime observed for particular “miscalibration patterns”
and/or size of the cars position/angles randomisation

• artefact of the numerical methods used (?)

• effect under investigation but much smaller then the systematic errors (see next pages)



G.G. Global LiCAS Simulation 20

Extrapolation to 600 m tunnel section (TESLA betatron wavelength)

• extrapolation using random walk model, asymptotic behaviour: σxy,n ∼ n
3
2, σz,n ∼ n

• longitudinal precision promising for dumping rings (∼ 0.2 mm/10 km, stat. errors only)
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Single train simulation: Monte Carlo approach

• assuming intrinsic resolutions:

– CCD: σCCD = 1 µm

– FSI: σFSI = 1 µm

• 1000 Simulgeo runs, simplified model, no errors
on calib. const. (INT/EXT-FSI,CCD,BS)

• open markers: Matrix calculation (analytic)
solid markers: Errors from Monte Carlo

A = RotX

B = RotY

C = RotZ
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20 train stops ( = 90 m tunnel section)

• 20 overlapping trains

• train stops are coupled to each other via the (previously measured) wall markers

• results of full
Simulgeo simulation
(error matrix rank
N 2 ∼ 10 0002)

• very CPU consuming !

• fast growth of
transverse errors !
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Ray Tracer, Reconstruction and train Monte Carlo

• Ray Tracer: generating (for a given geom-
etry) all CCD, internal and external FSI
measurements

• Running Simulgeo in
RECONSTRUCTION MODE.
Solving the geometry of the system using
provided “experimental” measurements.
(Input from ray-tracer).

• smearing of the measurements with
CCD/FSI resolution, running many train
“journeys” in a loop:
Monte Carlo approach to the propagation
of stat. errors
(next plans: use it to study systematics)
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Sensitivity of various internal train subcomponents
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• LSM: transverse translation (Trx,y, σ ≈ 0.3µm) and rotation (Rotx,y, σ ≈ 3.0µrad)

• INT-FSI: longitudinal distance (σ ≈ 1µm) (± redundancy for LSM)

• Clinometer: only Rotz used (insensitive to the geoid shape)
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RTRS: Rapid Tunnel Reference Surveyor in DESY “red-green” tunnel

• Tunnel infrastructure ready (tunnel length 60 m)

• Mechanics (propulsion, control, etc.) of RTRS ready

• Waiting for Invar sensing modules
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LiCAS Invar sensing body of RTRS car

• machining of the LiCAS Invar body for the sensing units

• Invar: alloy of nickel and steel, very small thermal expansion coefficient
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Random Walk Monte Carlo: trajectories, fits

• repeating this procedure for many “numerical experiments”...

• trajectories generated from
Random Walk Monte Carlo
using parameters from the
fit to Simulgeo points
(X,Y ) direction

• good news: points along
trajectories are strongly cor-
related (ie.: small ’oscilla-
tions’ observed)

• straight line fits to the Ran-
dom Walk paths for 600 m
tunnel section
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Random Walk Monte Carlo: residua

• well below specification: σx = 500µm, σy = 200µm

• however: only statistical errors included so far

• precision between X – Y can be swapped by changing the marker location (horizontal to vertical position)

• mean deviation from
straight line fits
(X,Y ) direction

• realistic input to sim-
ulations of beam dy-
namics (licas sim)
→ LiCAS Random
Walk Simulation
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Fourier analysis of MC LiCAS trajectories: 600 m tunnel section

• typical example of x,y MC trajectories

• FFT spectra of x,y positions

• FFT spectra of x,y residua
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FFT mean spectra: 600 m tunnel section

• mean FFT spectra of x,y positions
< Amp > @600 m ∼ 200 µm

• mean FFT spectra of x,y residua
< Amp > @600 m ∼ 50 µm
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Fourier analysis of MC LiCAS trajectories: 15 km tunnel section

• typical example of x,y MC trajectories

• FFT spectra of x,y positions

• FFT spectra of x,y residua
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FFT mean spectra: 15 km tunnel section

• mean FFT spectra of x,y positions
< Amp > @15 km ∼ 20 mm

• mean FFT spectra of x,y residua
< Amp > @15 km ∼ 5 mm
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Single train simulation: resolution for reference markers

• distance between wall markers: 4.5 m
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20 train stops (90 m): train position and angles

• intrinsic resolutions and calibration constants as
for single train simulation (all σ = 1 µm ; 1 µrad)

• very CPU and memory consuming ! (100002 matrix)

for 20 stops 1.0 GB RAM and 34 h CPU time @2 GHz

A = RotX

B = RotY

C = RotZ


