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The LICAS LSM System

First measurements from the Laser Straightness Monitor of the
LiCAS Rapid Tunnel Reference Surveyor.
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Laser Straightness Monitor ~ (3) || 2; Rotation (4)
An internal beam (shown in red) s passed down the A rotation of the car

length of the RTRS and back. lts reflections off of G about the T-axis
beam splitters are registered on twelve CCDs, Pos- is indicated by reflected

T Translation {5)
Six imternal FSI1 lines (shown in green) between the cars
determine their relative translations in . These

measurements can also detect rotations sround T and §.

-

itions of the beams on the CCDs give information beams moving in the — -
about rotations and translations in the T and - opposite directions. 5] I; Translation
axes, Clinometres (not shown) give Further infor- Rotations about the Translations in the y-axis sppess on the CCDs
mation about rotations about the I-axis. axis can also be as beams moving in the same direction. Translations
[ d, but = in & are similarly seen, but translations
rotations are invisible te in £ are invisible to this mechanism, .

External FSI  (2)

Train with three cars s
stationed in front of three

wall markers. Each car is
independently slightly translated
and for rotated wntil six external
F5I lines hit =ach retroreflector.
Six distances are recorded.
However, to establish their
relative positions, a local
coordinate system must be

the LSM, and require
separate measurements
with clinometres (not
whown ).

s

established,

(1) Tunnet  / °
Preparation

Retroreflectons (RR)
posithoned every

#u Grn plong tunmnel
wall.

Dur goal will be to
measure their
positions bo within

# Pliarn over

each ~ film section
of tunnel.

LU
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(8) Component Alignment
Given coordinates of the wall markers, accel-
erator components can then be aligned to

these markers.

Marker Determination (Ifl
With the information gleaned from the internal/external F5I,
LSM and clinometre subsystems, vectors between the wall
markers can be determined. A least squares analysis
is performed to find the wall marker positions which
match our data most closely.
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Sensitivity of Internal Components

[

o

Component
LSM

FSI
Inclinometer
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Straightness Monitor Basics

The train needs to know how
it is aligned internally.

Achieved by internal FSI and
the Laser Straightness
Monitor.

Incoming
beam

ﬁ
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LSM is used to measure:
- Transverse translations
- Rotations

Require 1um precision over length
of train

f

Outgoing
beam

y

s
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Produced System

Laser beam
Pellicles
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Beam Fitting

Multiple beams fitted on each image
(to deal with reflections)

Typical difficult image Differences from data and fit
(range of 2/256)
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Beam Fitting

= Real life beams fitted over 40 hours to:
= 1.28um horizontally
= 0.54um vertically

= Difference not understood — possibly beam
jitter
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Stabil |ty IWAAQS, G. Moss

= Large amount of data taken with no planned
movement

= 2 X 10 images every 10 minutes
= Data taken for 4 days
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An example camera: 45 o o
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Camera Q + Camera 2
Camera 0 + Camera 2 added
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Pellicles
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Ray Tracer

M | iCAS RayTracerSetup Yisualisation

> R ay trace r u S e d tO ‘:"ec 0.999388 0.023390 0.025997

0.023398 0.999726 0.000000

calculate s pot pos”:l ons Vec -0.025990 -0.000608 0.999662

Selected OO: IsmBlock
5 XPos: 0.00000
YPos: 0.00000

.nghly fIEXIbIe l : ZPos: -1.00580

Min Brightness: 0.00123

*Agrees with completely
independent Simulgeo
simulation

Rotaﬁn -
_ ]

J.J.
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Cam 0 Beam 0:
Cam 1 Beam 0:
Cam 1 Beam 1:
Cam 2 Beam 0:
Cam 3 Beam 0:
Cam 3 Beam 1:
Cam 4 Beam 0:
Cam S Beam 0:
Cam S Beam 1:
Cam 6 Beam 0:
Cam 7 Beam 0:
Cam 7 Beam 1:
Cam 8 Beam 0:
Cam 9 Beam {:
Cam 9 Beam 1:

Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
Br:
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=13

1 -229.39418 Y: 20.95379
9112 1211’r Y 12‘12 4831

Cam 10 Beam 0: Br: ;].059
Cam 11 Beam 0: Br: 0.0266 7
C'un 11 Beam 1: Br: 0.0021 X: 4967, 9‘«019 Y: 3485.50134
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Reconstruction

Ray tracer is used as a part of a fit function for the
Minuit fitting package

13.02.2008

Position & orientation of each LSM unit used as the fit
parameters

CCD spots fitted by Chi-squared Minimisation

Precise to ~0.5xSpot uncertainty for translatio
= ~0.3 microns

Precise to ~5xSpot uncertainty for rotati
= ~3 microradians

Easy to take many images, ave
average.
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Reconstruction

Set Orientation
in RayTracer

v

Do Ray-trace

o~

Traced BSS

/

Compare

v

Difference is
the chi squared

v

Change orientation
parameters until chi-
squared is a minimum

|| Measured data _ ¢
|| Variables changed OrientationiREiE

in model shoul
Data produced
by ray-tracer
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Internal Geometry

= Model used needs correct geometry
= Camera positions & orientations
= Pellicle positions & orientations

= These are the calibration constants
s Measured to 5-10 microns wit
= Need to know some bette
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Constant Importance

Fractional Effect of Calibration Constant Errors Fractional Effect of Calibration Constant Errors
Important on X Reconstruction on Y Reconstruction
Constants
= <
© ©
@ @
c [
@] o
O O
g c c
CCD Y positions S 2
g g
l 5 3
CCD Z positions 8 8
Pelllde Y -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60
p05|t|0n5 Fractional Effect Fractional Effect
Pellicle Z
OSitionS Fractional Effect of Calibration Constant Errors Fractional Effect of Calibration Constant Errors
p on X Rotation Reconstruction on Y Rotation Reconstruction
< <
g8 g8
1 micron error in 2 2
- O O
parameter gives = =
0.25 - 0.5 micron ¢ 3
2 2
/2.5-5.0 8 8
. . O O
milliradian error | | ‘ ‘ ‘ ‘ | ‘
in reconstructed -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
parameter Fractional Effect Fractional Effect
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Classical Calibration

‘Calibration Constants ‘

\ﬂ Setup RayTracer

For n Orientations ‘

True Orientation
(measured by
laser tracker)

h 4

/

Set Correct Orientation ‘

Measured BSS

(taken by cameras)

Do Ray-trace

‘ Traced BSS

Add difference to
total chi squared

|| Measured data
|| Variables changed

D Data produced by ray-tracer

13.02.2008

v

Change calibration
constants until chi-
squared,is a minimum

Calibration constants
in model should

match their real life
counterparts

IWAAO8, G. Moss

eThis method compares spot

positions generated using a set
of calibration constants, to the
measured values (knowing t
correct orientation).

eMany orientations
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Classical Calibration

= Simulation run with typical values:
« 1ym camera resolution
=« 3um/10uradian observation error
= 80 orientations used
= 1mm component uncertainty

= Important constants found to <

= Other constants found to <
useful)
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statistical error of that system

Example run shown
on right.

However — this is only
one example. Would
like to know what to
expect in general.
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Classical Calibration

Now USE the fitted constants
Reconstruct many times and compare to the truth

Mean residual gives systematic error of that system
Standard Deviation is dominated by camera resolution — gives

IWAAO8, G. Moss
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Classical Calibration

= Run simulation many times (with 0.1 mm
component uncertainty)

s Collect the mean and standard deviation
values of the histograms produced

= Create a histogram of these values

= For the mean histogram the standard
deviation gives the accuracy

= For the standard deviation histogra
mean gives the precision
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Classical Calibration
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18 i— Mean -1.412e-D08 + 1.483e-008 16 ;_ y Mean 8.584e-009 = 1.501e-008
18 ;_ RMS 31.315e-007 + 1.04Be-008B 14 ;_ i ; RMS 3.355e-007 = 1.061e-008
14 a ull i /
= 125 ’ /
12 " — ] /
- . 10 V
10 L
oF / Accuracy: 0.3 um
- ]J o =
6 7 = :
F g ’ 4 "
- - 7
2 — 1‘ 2 [ ’ ﬂ
o E e e | <10° o (IR Mﬂ 1% Il 1o
-1 0.5 0.5 1 -1 0.5 0 0.5 1

| X Standard Deviation Histogram I
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Reconstruction Offset (m)
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50
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Reconstruction Standard Deviation {m)

Mean 4.228e-007 + 4.801e-009

RMS 1.073e-007 + 3.295e-009

] ! L n<1l:|"5

1.2

0.6 0.8 1 1.2
Reconstruction Standard Deviation {m)
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Classical Calibration

|R Rotatlon Offset Histngrarnl ¥ Rodation Offset Histogram I
1
N | Mean 1.58a-008 + 5.217e-008 12 1 Mean-3.198:-008 + 5.3526-008
12— N
- RMS 1.167e-006 + 3.689e-008 10 RMS 1.197e-006 + 3.785¢-008
10 — [ - }
- 8 J
B L j 1/
of- Accuracy: 1.2 pradians
4 :— 4 — H_ 1E
L L ﬁ%% ﬂ
GI . % <10 0 i . ; [x10's
-3 -2 -1 0 1 2 3 -3 2 -1 i}
Reconstruction Offset (radians) Reconstruction Offset (radians)
| M Rotation Standard Daviation Histogram I ¥ Rotation Standard Deviation Histogram I
22 - -
20 Mean 2.4182-006 & 1.1756-008 L Mean 2.416e-006 + 1.167¢-008
18- -
16E- 5 % RMS 2.628e-007+ 8.311a-009 2 2 RMS  2.609e-007 L 8.256-009
14 ;— 20 ﬁ n
12 . . . .
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Auto-Calibration

= E = External unknowns (reconstructed variables)
= [ = Internal unknowns (calibration constants)
= M = Measurements

= M=FE,1I
= Eg for a single LSM reading
= 8 measurements (CCD spot positions)
= 4 external unknowns
= 18 internal constant unknowns
= (this is underconstrained)
= For 10 readings
= 80 measurements
= 40 external unknowns

= 18 internal constant unknowns
(This is overconstrained by 22 DoF)

= We use the large overconstraint found with ma
constants.

= Complements both classical calibration m
= Can be used with much more data an
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Auto-Calibration

‘ Calibration Constants ‘

—— = This method incorporates
For n sets of beam spots ‘ the CallbratIOn COnSta ntS
as part of the fitting

! Recon'struct ‘ process
% = Many runs are fit
\ 4 Reconstructed .
Chi-Squared | | Orientation masse and th

from fit Discarded
chi-square

Add to total
chi squared

\ 4
Change calibration
constants until total
chi-squared is a minimum

. Measured data ¢
Variables changed [ ¢4 jipration constants
(] Data produced in model should
by reconstructor match their real life
counterparts
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Auto-Calibration

= Simulations have been performed using typical
uncertainties
= 40 runs
= 1ym camera resolution
= 0.1mm constant uncertainty

= Find most important constants to <0.3pu
corrections)

= Problems (as expected) with scali
= Still a useful addition to calib
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Conclusions

= Working LSM system

= Beam fitting now mature

= Stability under investigation
= Ray tracer well developed

= Reconstruction effective

= Calibration predicted to work well
= Autocalibration predicted to co
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