The LiCAS LSM System

First measurements from the Laser Straightness Monitor of the LiCAS Rapid Tunnel Reference Surveyor.

Warsaw University

13.02.2008

Contents

- LiCAS Overview
- Straightness Monitor Basics
- Produced system
- Beam Fitting
- Stability
- The Ray tracer
- Reconstruction
- Calibration
- Autocalibration
- Conclusions

The RTRS

Sensitivity of Internal Components

Component	TrX	TrY	TrZ	RotX	RotY	RotZ
LSM		\				
FSI	±	ť	$\overline{}$	±	±	
Inclinometer				√(not used)		\checkmark

Straightness Monitor Basics IWAA08, G. MOSS

The train needs to know how it is aligned internally.

Achieved by internal FSI and the Laser Straightness Monitor.

- LSM is used to measure:
 - Transverse translations
 - Rotations
- Require 1µm precision over length of train

Produced System

IWAA08, G. Moss

Beam Fitting

Multiple beams fitted on each image (to deal with reflections)

Typical difficult image

Differences from data and fit (range of 2/256)

Beam Fitting

Real life beams fitted over 40 hours to:

- 1.28µm horizontally
- 0.54µm vertically
- Difference not understood possibly beam jitter

Stability

 Large amount of data taken with no planned movement

2 x 10 images every 10 minutesData taken for 4 days

Stability

Stability

Stability

Motion of ~1µm on car1 (0.2m away & attached) Motion of ~15µm on car2 (4.7m away)

Motion of ~35µm on car3 (9.2m away)

Launch/car1 are unstable to the order of 4 micro-radians over 4 days.

13.02.2008

The LSM

IWAA08, G. Moss

Ray Tracer

•Ray tracer used to calculate spot positions

•Highly flexible

•Agrees with completely independent Simulgeo simulation

LiCAS RayTracerSetup Visualisation

Reconstruction

Ray tracer is used as a part of a fit function for the Minuit fitting package

- Position & orientation of each LSM unit used as the fit parameters
- CCD spots fitted by Chi-squared Minimisation
- Precise to ~0.5xSpot uncertainty for translations
 - ~0.3 microns
- Precise to ~5xSpot uncertainty for rotations
 - ~3 microradians
- Easy to take many images, average, then fit or fit then average.

Reconstruction

IWAA08, G. Moss

Internal Geometry

IWAA08, G. Moss

Model used needs correct geometry

- Camera positions & orientations
- Pellicle positions & orientations

These are the calibration constants
Measured to 5-10 microns with CMM
Need to know some better

Constant Importance

Fractional Effect of Calibration Constant Errors Fractional Effect of Calibration Constant Errors on X Reconstruction on Y Reconstruction Important Constants Calibration Constant **Calibration Constant** CCD Y positions CCD Z positions Pellicle Y -0.40 0.00 -0.30-0.20 -0.10 0.00 0.10 0.20 0.30 -0.60-0.20 0.20 0.40 0.60 positions Fractional Effect **Fractional Effect** Pellicle 7 Fractional Effect of Calibration Constant Errors Fractional Effect of Calibration Constant Errors positions on X Rotation Reconstruction on Y Rotation Reconstruction **Calibration Constant Calibration Constant** 1 micron error in parameter gives 0.25 – 0.5 micron / 2.5 – 5.0 milliradian error in reconstructed -3.00-2.00 -1.000.00 1.00 2.00 3.00 -3.00-2.00 -1.000.00 1.00 2.00 3.00 **Fractional Effect Fractional Effect** parameter

IWAA08, G. Moss

Classical Calibration

•This method compares spot positions generated using a set of calibration constants, to the measured values (knowing the correct orientation).

- Many orientations are used
- •It changes the calibration constants until the difference between the measured spots is minimised.
- •Complements linear algebra method (see presentation by A. Reichold.)

Classical Calibration

- Simulation run with typical values:
 - 1µm camera resolution
 - 3µm/10µradian observation error
 - 80 orientations used
 - Imm component uncertainty
- Important constants found to < 1 µm
 Other constants found to <100 µm (not that useful)

Classical Calibration

IWAA08, G. Moss

- Now USE the fitted constants
- Reconstruct many times and compare to the truth
- Mean residual gives systematic error of that system
- Standard Deviation is dominated by camera resolution gives statistical error of that system

Example run shown on right.

However – this is only one example. Would like to know what to expect in general.

Classical Calibration

- Run simulation many times (with 0.1 mm component uncertainty)
- Collect the mean and standard deviation values of the histograms produced
- Create a histogram of these values
- For the mean histogram the standard deviation gives the accuracy
- For the standard deviation histogram the mean gives the precision

Classical Calibration

IWAA08, G. Moss

13.02.2008

Classical Calibration

IWAA08, G. Moss

Auto-Calibration

- E = External unknowns (reconstructed variables)
- I = Internal unknowns (calibration constants)
- M = Measurements
- M = F(E,I)
- Eg for a single LSM reading
 - 8 measurements (CCD spot positions)
 - 4 external unknowns
 - 18 internal constant unknowns
 - (this is underconstrained)
- For 10 readings
 - 80 measurements
 - 40 external unknowns
 - 18 internal constant unknowns (This is overconstrained by 22 DoF)
- We use the large overconstraint found with many readings to determine the calibration constants.
- Complements both classical calibration methods
- Can be used with much more data and can show how constants change.

Auto-Calibration

- This method incorporates the calibration constants as part of the fitting process
- Many runs are fitted enmasse and the individual chi-squareds summed
- The constants that give the lowest total chisquared are chosen.

Auto-Calibration

- Simulations have been performed using typical uncertainties
 - 40 runs
 - 1µm camera resolution
 - 0.1mm constant uncertainty
- Find most important constants to <0.3µm (after corrections)
- Problems (as expected) with scaling & offsets
- Still a useful addition to calibration

Conclusions

- Working LSM system
- Beam fitting now mature
- Stability under investigation
- Ray tracer well developed
- Reconstruction effective
- Calibration predicted to work well
- Autocalibration predicted to compliment well