FINAL CONCEPT OF THE PHOTOGRAMMETRIC ALIGNMENT SYSTEM RALF FOR HIGH-RADIATION AREAS OF FAIR

Andreas Marbs, Frank Boochs i3mainz, Mainz, Germany

Ina Pschorn GSI, Darmstadt, Germany

- FAIR
- RALF Alignment concept

Outline

- Test installation
- Conclusion

Institut für Raumbezogene Informations- und Messtechnik

FA

FAIR

FAIR – <u>Facility for Antiproton and Ion Research</u>

- new accelerator facility
- start of construction: winter 2008/09
- completion: 2015/16
- Double ring synchrotron SIS 100/300: circumference 1100 m
- Diverse new storage rings: CR, HESR, RESR, NESR
- Super-Fragment-Separator
- Cost: 1.1 billion €

i 3 mainz

FAIR

New constraints for accelerator alignment

- No access to accelerator tunnel after commissioning of FAIR due to high radiation environment in some areas of Super-FRS
- Accuracy requirements: 0.1 mm
- stretched, non-linear geometry
- Lack of space (iron and concrete shieldings)
- automatic and remote-controlled adjustment of machine geometry (high radiation! huge masses!)

Concept (introduced at IWAA 2006) "R A L F" – <u>Remote AL</u>ignment on the <u>Fly</u>

- Photogrammetric solution
- Remote-controlled vehicle equipped with digital cameras
- Photogrammetric targets on magnets
- Automatic target detection, image measurement and bundle adjustment
- Remote-controlled motorized jacks for geometric adjustment of magnets

Configuration of RALF

Configuration of RALF

i 3 mainz

- Dimensions of working platform: approx. 4 m x 1.3 m x 30 m
- Two camera vehicles
- At least three excentric fiducial points per magnet
- Large number of additional tie-points for stable network geometry

Configuration of RALF

i 3 mainz

Final slides of IWAA06 presentation

i 3 mainz

FAIR

Goal

- Verify simulations
- Test of image analysis on different types of targets
- Practical tests of cameras
- Investigation of the influence of a fixed relative orientation
- Run through a complete alignment scenario

FAIR

Procedure

- Signaling of the corridor floor with coded and uncoded targets
- Test of different target types (size, white/reflective)
- Calibration of cameras
- Image bundle from both sides of the corridor
- Controlled Movement of "magnet dummy". Reference measurement using analogue dial indicators
- Second image bundle
- Image analysis using ImetricS, bundle adjustment using Ax.Ori

Institut für Raumbezogene Informations- und Messtechnik

	Table movement (reference measurements with dial indicators)				
	х	Y	Z		
I_AA	0,08	0,54	0,31		
I_AB	0,08	0,22	0,00		
I_AC	-0,12	0,22	-0,27		
I_AD	-0,12	0,54	0,05		
I_AE	0,01	0,44	0,13		
I_AF	-0,10	0,38	-0,09		
I_AG	0,01	0,29	-0,03		

GSI

i 3 mainz

Fachhochschule Mainz

	Reference Movement (Dial indicators)			Movement determined with RALF			
	х	Y	Z	x	¥	Z	
I_AA	0,08	0,54	-0,31	0,06	0,59	-0,37	
I_AB	0,08	0,22	0,00	0,02	0,19	0,06	
I_AC	-0,12	0,22	0,27	-0,18	0,24	0,32	
I_AD	-0,12	0,54	-0,05	-0,19	0,64	0,16	
I_AE	0,01	0,44	-0,13	-0,08	0,48	0,02	
I_AF	-0,10	0,38	0,09	-0,17	0,39	0,04	
I_AG	0,01	0,29	0,03	-0,01	0,32	0,18	
RMS							

- Bundle adjustments of the two measurement runs
- Transformation of run 2 to run 1 using 49 tie points (w/o points on table)
- Comparison of coordinate differences of the points on the table

	Reference Movement (Dial indicators)		Movement determined with RALF			Difference			
	x	Y	Z	x	Y	Z	diff X	diff Y	diff Z
I_AA	0,08	0,54	-0,31	0,06	0,59	-0,37	0,02	-0,06	0,06
I_AB	0,08	0,22	0,00	0,02	0,19	0,06	0,06	0,03	-0,06
I_AC	-0,12	0,22	0,27	-0,18	0,24	0,32	0,06	-0,02	-0,04
I_AD	-0,12	0,54	-0,05	-0,19	0,64	0,16	0,07	-0,10	-0,21
I_AE	0,01	0,44	-0,13	-0,08	0,48	0,02	0,10	-0,03	-0,14
I_AF	-0,10	0,38	0,09	-0,17	0,39	0,04	0,06	-0,01	0,04
I_AG	0,01	0,29	0,03	-0,01	0,32	0,18	0,03	-0,04	-0,15
RMS							0,06	0,05	0,12

• Note: Reference measurement using the dial indicators is only of limited accuracy and reliability

i 3 mainz

Institut für Raumbezogene Informations- und Messtechnik

	Х	Y	Z	
RMS	0,03	0,02	0,06	
Max.	0,07	0,09	0,15	

- Transformation of all points from run 2 to run 1 (except points on magnet dummy)
- Good repeat accuracy confirms accuracy potential of RALF
- Room for additional error sources in practice: e.g. hidden points, bad point distribution etc.
- When using only images from one corridor side, accuracy becomes worse by factor 2 to 4

Conclusion

- Test installation confirms simulations!
- Goals of RALF can be achieved
- Measurement accuracy below 0.1 mm
- Some practical aspects of RALF are still under discussion (see paper), e.g.
 - Transfer of accelerator geometry to service platform
 - Movement of the magnets
 - Motion system
 - Connection to adjacent sections of Super-FRS
- Concept is a promising alternative to traditional alignment methods and may be applicable at many accelerator sections, not only at GSI

Thanks for your attention!

Institut für Raumbezogene Informations- und Messtechnik

FAIR