

The remote positioning of the LHC inner triplets

<u>D. Missiaen</u> on behalf of *M. Acar J. Boerez A. Herty H. Mainaud Durand A. Marin*

- Introduction
- The sensors
- The motors
- The repositioning
- Conclusions

- The LHC accelerator
 - 27 km of proton-proton beam
 - 4 experiments
- The LHC inner triplets
 - low β quadrupoles for the final focus
 - 3 on each side of the 4 experiments

Alignment requirements

- Inside a triplet : 0.1mm at 1σ
- Collinearity :
 - in z : 0.1 mm at 1 σ
 - in x : 0.2 mm at 1 σ for IP2, 8
 - in x : 0.1 mm at 1 σ for IP1, 5 = > Survey galleries
- Stability : several μm
- Permanent monitoring and remote alignment system

11-15 february 2008

FRAGILE

- WPS for horizontal and
- No monitoring in longitud

11-15 february 2008

The UPS galleries

CERN

11-15 february 2008

11-15 february 2008

11-15 february 2008

Home | Help | EDMS site | |

User: H

	C-1				<u></u>	S	earch : Equip
Assembly Tra	00			(Main Made of Fautomatic Lab			
Assembly Inc				Action Edit	Coperation L Do	cuments 🐧 History	
				Actions : Luit			
				External Links	wtornal data lir	k oviete	
Support Type GISSD				NOR	external uata ir	IK EXISTS	
🗝 WPS Wire Reference	e Sensor	GIWPS		Property Values			
WPS Remote Elect	tronics GP	WPE		Property	Nominal Value	Value	Unit
S M/DS coble CM//DC	~	The second se		Storage Location		MQXB.B2L1.B	
				INB Number			
	0			Inventory Number			
HLS Vessel GIHLV				Manufacturing Date		09/06/2005	
🛏 🕆 HLS sensor GIHLS				Generation		3	
· · · · · · · · · · · · · · · · · · ·				Etendue de Mesure		10 x 10	mm
				Resolution du Capteur		0.2	μm
				Type Electronique		deportee	
		10-		Electrodes par Axe		2	
				Signal de Sortie		0-10	v
				Interface Optique		non	
				Nore Cables par Capteur		2	
				Interchang, Radiale		0.186	mm
				Interchang. verticale		0.13	mm
				0 Meesnique Verties		23.5	mm
				o Mecanique Vertical		23.5	7
				AU A1		-5.85551010319 0.220061160400	97 D
				41		-0.00000009400)) ()
				A2		-0.02333070942	10
				A4		0.00234210430	2
				A5		-6 483696E-06	,
				46		0.90555757075	1
				A7		-0.04413430659	99
				AB		0.001125894204	1
				A9		0.001081054022	2
				A10		-0.00013173433	75
				A11		5.947911E-06	
				A12		0.02760999602	
				A13		0.006797311622	2
				A14		-0.00124066529	98
				A15		-0.00003509847	76
				A16		0.000030023754	1
				A17		-2.188306E-06	
				A18		0.01473258797	7
				A19		-0.00485713120)9
				A20		0.000914439263	1
				A21		-0.00006405363	33
				A22		-9.27441E-07	
				A23		3.31273E-07	
				A24		-0.00247959918	36
				A25		6.67276693E-4	

(2.A) Vidange HLS Q1

22.11.2007

15.11.2007

(1) Déplacement au niveau Q1

Classe	Numéro	Pt	Dist.Cumulé	09H00	11H00	DY	DDY	DDY THEO	DELTA
MBXW	4L1		26596.33420	-0.19170	-0.20660	0.01490	-0.44550	-0.44550	0.0
MQXA	3L1	Α	26606.39640	-0.78300	-0.91185	0.12885	-0.33155	-0.32830	-3.3
1QXA	3L1	В	26610.59624	-0.57985	-0.75550	0.17565	-0.28475	-0.27938	-5.4
1QXB	2L1	Α	26616.04436	-0.73950	-0.97975	0.24025	-0.22015	-0.21592	-4.2
1QXB	2L1	В	26625.11969	-0.83430	-1.19000	0.35570	-0.10470	-0.11021	5.5
1QXA	1L1	Α	26630.37316	0.04245	-0.37305	0.41550	-0.04490	-0.04902	4.1
IQXA	1L1	В	26634.58159	-0.08390	-0.54430	0.46040	0.00000	0.00000	0.0
	•							•	
Classe	Numéro	Pt	Dist.Cumulé	09H00	11H00	DX	DDX	DDX THEO	DELTA
1BXW	111		26506 33420	-0 50685	0 5 6 4 4 0	0 00075	1 1 7005		
	14L1		20090.00420	 -0.59005	-0.56410	-0.032/5	1.1/835	1.17835	0.0
IQXA	3L1	А	26606.39640	-1.26855	-0.56410	-0.03275	0.86800	1.17835 0.86835	0.0
1QXA 1QXA	3L1 3L1	A B	26590.33420 26606.39640 26610.59624	-1.26855	-0.56410 -0.92545 -2.20125	-0.03275 -0.34310 -0.47205	1.17835 0.86800 0.73905	1.17835 0.86835 0.73896	0.0 -0.3 0.1
IQXA IQXA IQXB	3L1 3L1 2L1	A B A	26606.39640 26610.59624 26616.04436	-1.26855 -2.67330 -0.32185	-0.92545 -2.20125 0.31550	-0.03275 -0.34310 -0.47205 -0.63735	1.17835 0.86800 0.73905 0.57375	1.17835 0.86835 0.73896 0.57111	0.0 -0.3 0.1 2.6
1QXA 1QXA 1QXB 1QXB	3L1 3L1 2L1 2L1	A B A B	26536.33420 26606.39640 26610.59624 26616.04436 26625.11969	-0.39083 -1.26855 -2.67330 -0.32185 -0.11895	-0.56410 -0.92545 -2.20125 0.31550 0.79495	-0.03275 -0.34310 -0.47205 -0.63735 -0.91390	1.17835 0.86800 0.73905 0.57375 0.29720	1.17835 0.86835 0.73896 0.57111 0.29151	0.0 -0.3 0.1 2.6 5.7
AQXA AQXA AQXB AQXB AQXA	3L1 3L1 2L1 2L1 1L1	A B A B A	26636.39640 26610.59624 26616.04436 26625.11969 26630.37316	-0.39085 -1.26855 -2.67330 -0.32185 -0.11895 1.40035	-0.56410 -0.92545 -2.20125 0.31550 0.79495 2.48455	-0.03275 -0.34310 -0.47205 -0.63735 -0.91390 -1.08420	1.17835 0.86800 0.73905 0.57375 0.29720 0.12690	1.17835 0.86835 0.73896 0.57111 0.29151 0.12966	0.0 -0.3 0.1 2.6 5.7 -2.8
MQXA MQXA MQXB MQXB MQXA MQXA	3L1 3L1 2L1 2L1 1L1 1L1	A B A B A B	26636.39420 26606.39640 26610.59624 26616.04436 26625.11969 26630.37316 26634.58159	-0.39083 -1.26855 -2.67330 -0.32185 -0.11895 1.40035 0.05170	-0.56410 -0.92545 -2.20125 0.31550 0.79495 2.48455 1.26280	-0.03275 -0.34310 -0.47205 -0.63735 -0.91390 -1.08420 -1.21110	1.17835 0.86800 0.73905 0.57375 0.29720 0.12690 0.00000	1.17835 0.86835 0.73896 0.57111 0.29151 0.12966 0.00000	0.0 -0.3 0.1 2.6 5.7 -2.8 0.0

mesures OK, fil validé

- Dz difference start- end
- Dzz shifted to Zero for theorem of intersecting lines
- Dzz theo theoretical value obtained from intersecting lines
- Delta difference between Dzz and Dzz theo

UNDER 0.10201

HLS validated on triplet (TRI)

communation between cavern and triplet > 75 min ... DIFF therefore different

MQXA.3 MQXA.3 MQXA. MOXB. MOXB. MOXB.: MQXB. MQXB.2 MQXA. MQXA.: MQXA.: GISB.U

- 5 triplets out of 8 are equipped
 - Stabilisation of HLS for tilt adjustment 100 s within 1

- "She Same jacks as the standards magnets from Indian collaboration but modified the standards magnets from
- Motors and adaptors from Slovak company ZTS
 - 48 radial, 80 Vertical
 - Easy to install/uninstall
 - Characteristics also stor (type, serial number, rep
- Vertical adjustment
- → Horizontal adjustment

Motors

- Quality control
 - All motors and adaptors tested individually
 - Each couple motor/adaptor tested on a 15 t spare magnet
- Installation
 - Once the alignment systems are installed
 - Ethernet connection to display sensors value close to the magnet to be equipped
 - Small movement of 0.1 mm max during installation

- It is NOT an active repositioning
- The repositioning is decided by Physicists who calculate new magnet positions
- Values have to be transformed to displacements :
 - At the level of the sensors
 - At the level of the motors
- Displacements are carried out
- New measurements taken by sensors and new position calculated

11-15 february 2008

- to adjust the tilt
- to carry out the radial displacements
- to control the tilt and re-adjust the tilt if necessary
- to carry out the vertical displacements, knowing that the same displacements must be applied on the tilt jacks in order to keep the tilt adjusted.
- The repositioning will be performed within several iterations. The backlash on the jack being important (about 8°), the displacement must always be carried out keeping the same direction.

- All data stored in the LOGGING database for offline analysis
- Calculation of the new position with LGC
 - Creation of an LGC input file with :
 - Theoretical data (SURVEY db)
 - Measurements (PVSS)
 - Sensors, calibration, position, constants (MTF db)
 - LGC generates an ouput with the new deviations of the magnets
 - The values are sent to PVSS in the « client » interface

- At the present time, the repositioning can be carried out on a local mode
- Repositioning is possible within a few μ m
- HLS and WPS readings have good correlation after a stabilisation time

- 5 out of 8 triplets are completely equipped with measuring and repositioning systems
- Both systems seem to meet their requirements
- Some EMI effects in the process to be solved
- The next pieces of the puzzle to be installed before end of April