The remote positioning of the LHC inner triplets

D. Missiaen on behalf of
M. Acar
J. Boerez

A. Herty
H. Mainaud Durand
A. Marin

Overview

- Introduction
- The sensors
- The motors
- The repositioning
- Conclusions

Introduction

- The LHC accelerator
- 27 km of proton-proton beam
- 4 experiments
- The LHC inner triplets
- low β quadrupoles for the final focus
- 3 on each side of the 4 experiments

Atlas

Alignment requirements

- Inside a triplet : 0.1 mm at 1σ
- Collinearity :
- in $\mathrm{z}: 0.1 \mathrm{~mm}$ at 1σ
- in x : 0.2 mm at 1σ for IP2, 8
- in $x: 0.1 \mathrm{~mm}$ at 1σ for IP1, $5=>$ Survey galleries
- Stability : several $\mu \mathrm{m}$
- Permanent monitoring and remote alignment system

The sensors

The sensors

- WPS for horizontal and
- No monitoring in longitud

IWAA

The UPS galleries

The sensors

```
Assembly Tree
\({ }^{9}\) Support Type GISSD
WPS Wire Reference Sensor GIWPS
97 WPS Remote Electronics GIWPE
```



```
\(\rightarrow\) HLS Vessel GIHLV
T HLS sensor GIHLS
```


-

Tool Folder: Main Info

Tool Identifier: ZZ01001115
Other Identifier: MQXB.B2L1.B Description: Support Type GISSD

Actions: Edit	
Physical	
Manufacturer	CERN
Project Engineer	
Status	Accepted
Other Identifier	MQXB.B2L1.B
Parent Equipment	
Parent Slot	
Location	
State	Good
Comments	
RAS	
Design	
Item in ABS	VSupport Type GISSD (ver.0)
Audit	
Created on	2007-02-14 by JBOEREZ
Last modified on	2007-10-02

[^0](C) CERN - 2007-12-07 12:30:31

The sensors
Assembly Tree $\quad{ }^{\triangle}$ Tool Folder: Properties

T Support Type GISSD
WPS Wire Reference Sensor GIWPS
© WPS Remote Electronics GIWPE
9 WPS cable GIWPC
T WPS cable GIWPC
CTLS Vessel GIHLV
由-9 HLS sensor GIHLS

Tool Identifier: ZZ01001115
Other Identifier: MQXB.B2L1.B
Description: Support Type GISSD

CERN - European Organization for Nuclear Research
(C) CERN - 2007-12-07 14:42:18

The sensors

Assembly Tree

T Support Type GISSD
WPS Wire Reference Sensor GIWPS
TVPS Remote Electronics GIWPE
WPS cable GIWPC
WPS cable GIWPC
CTLS Vessel GIHLV

- HLS sensor GIHLS
${ }^{\wedge}$ Tool Folder: Events History

Tool Identifier: ZZ01001115
Other Identifier: MQXB.B2L1.B
Description: Support Type GISSD

Actions :			
Date	\|Type	\|Related value	\|Done by
2007-02-14	Creation		JBOEREZ
2007-02-20	Status changed to	Accepted	Jboerez
2007-02-20	Child attached	z201000780	Jboerez
2007-02-20	Child attached	z201000970	Jboerez
2007-02-20	Child attached	z201000909	Jboerez

The sensors

Commissioning

(2.A) Vidange HLS Q1

(1) Déplacement au niveau Q1

Classe	Numéro	Pt	Dist.Cumulé		$\mathbf{0 9 H 0 0}$	$\mathbf{1 1 H 0 0}$	DY	DDY	DDY THEO	DELTA
MBXW	4L1		26596.33420		-0.19170	-0.20660	0.01490	-0.44550	-0.44550	0.0
MQXA	3L1	A	26606.39640		-0.78300	-0.91185	0.12885	-0.33155	-0.32830	-3.3
MQXA	3L1	B	26610.59624		-0.57985	-0.75550	0.17565	-0.28475	-0.27938	-5.4
MQXB	LL1	A	26616.04436	-0.73950	-0.97975	0.24025	-0.22015	-0.21592	-4.2	
MQXB	LL1	B	26625.11969	-0.83430	-1.19000	0.35570	-0.10470	-0.11021	5.5	
MQXA	1L1	A	26630.37316		0.04245	-0.37305	0.41550	-0.04490	-0.04902	4.1
MQXA	1L1	B	26634.58159	-0.08390	-0.54430	0.46040	0.00000	0.00000	0.0	

Classe	Numéro	Pt	Dist.Cumulé	09H00	11H00	DX	DDX	DDX THEO	DELTA
MBXW	4L1		26596.33420	-0.59685	-0.56410	-0.03275	1.17835	1.17835	0.0
MQXA	3L1	A	26606.39640	-1.26855	-0.92545	-0.34310	0.86800	0.86835	-0.3
MQXA	3L1	B	26610.59624	-2.67330	-2.20125	-0.47205	0.73905	0.73896	0.1
MQXB	2L1	A	26616.04436	-0.32185	0.31550	-0.63735	0.57375	0.57111	2.6
MQXB	2L1	B	26625.11969	-0.11895	0.79495	-0.91390	0.29720	0.29151	5.7
MQXA	1L1	A	26630.37316	1.40035	2.48455	-1.08420	0.12690	0.12966	-2.8
MQXA	1L1	B	26634.58159	0.05170	1.26280	-1.21110	0.00000	0.00000	0.0

mesures OK, fil validé
Dz difference start- end
Dzz shifted to Zero for theorem of intersecting lines
Dzz theo theoretical value obtained from intersecting lines
Delta difference between Dzz and Dzz theo

$$
\text { LINIEL U. } \perp \text { LOLU }
$$

HLS validated on triplet (TRI)
communation between cavern and triplet $>75 \mathrm{~min} \ldots$ DIFF therefore different

First results

- 5 triplets out of 8 are equipped
- Stabilisation of HLS for tilt adjustment 100 s within 1 $\mu \mathrm{m}$

Lectures radiales WPS UPS IP1

Jacks and Motors

- -Same jacks as the standards magnets from Indian collaboration but \rightarrow modifitied
- Motors and adaptors from slovak company ZTS

Than

- 48 radial, 80 Vertical

○ Vertical adjustment
$\stackrel{\text { IP Easy to install/ȩninstâll }}{ }$
$\leftrightarrow \quad$ Horizontal adjustment

- Characteristies also stor
(type, serial number, rep

Motors

- Quality control
- All motors and adaptors tested individually
- Each couple motor/adaptor tested on a 15 t spare magnet
- Installation
- Once the alignment systems are installed
- Ethernet connection to display sensors value close to the magnet to be equipped
- Small movement of 0.1 mm max during installation

Remote repositioning

- It is NOT an active repositioning
- The repositioning is decided by Physicists who calculate new magnet positions
- Values have to be transformed to displacements :
- At the level of the sensors
- At the level of the motors
- Displacements are carried out
- New measurements taken by sensors and new position calculated

Remote repositioning

IP5_TRIPLET_RIGHT

HLS UPS16 HIGH
HLS UPS16 LOW

VISUALISATION EXPERT

Values observed on sensors at time before positioning

Automatic Movement to do on motors

Theoretical new values on sensors after displacement of beam

Values on sensors during positioning of magnet

HLS wox mm

HLS	
mm	

HLS wo mm
WPS wo mm

WPS wox mm

Repositioning strategy

- to adjust the tilt
- to carry out the radial displacements
- to control the tilt and re-adjust the tilt if necessary
- to carry out the vertical displacements, knowing that the same displacements must be applied on the tilt jacks in order to keep the tilt adjusted.
- The repositioning will be performed within several iterations. The backlash on the jack being important (about 8°), the displacement must always be carried out keeping the same direction.

Data Processing

- All data stored in the LOGGING database for offline analysis
- Calculation of the new position with LGC
- Creation of an LGC input file with :
- Theoretical data (SURVEY db)
- Measurements (PVSS)
- Sensors, calibration, position, constants (MTF db)
- LGC generates an ouput with the new deviations of the magnets
- The values are sent to PVSS in the « client » interface

First results

- At the present time, the repositioning can be carried out on a local mode
- Repositioning is possible within a few $\mu \mathrm{m}$
- HLS and WPS readings have good correlation after a stabilisation time

Conclusions

- 5 out of 8 triplets are completely equipped with measuring and repositioning systems
- Both systems seem to meet their requirements
- Some EMI effects in the process to be solved
- The next pieces of the puzzle to be installed before end of April

[^0]: CERN - European Organization for Nuclear Research

