

Laser Tracker Test Facility at SLAC

Georg Gassner Robert Ruland, SLAC *February, 2008*

Introduction

- Laser Tracker Component Calibration
- Horizontal Angle Tests
- ADM Tests
- Conclusion

Introduction

- Many physics experiments require very high accuracy positioning, e. g. 100 µm over a distance of 150 m or 25 µm in a 10 x 10 x 3 m volume
- Realization -> Laser Tracker Measurements
- What do we know about Laser Tracker calibration, e.g.
 - Perpendicularity of axes
 - Angle measurement accuracy
 - Distance measurement accuracy

Motivation for LT calibration

- Laser Tracker is used as a "black box" device
- No known published comprehensive system or component calibration approaches
 - B89.4.19 system calibration procedure is of very limited nature, only 2.3 m base line, < 45 deg angles, angle and distance measurement accuracies correlated
- In contrast, for decades Theodolites and Total Stations were subject of extensive research
 - Literature research creates pages of publication references

Calibration Approach

LT system calibration approach quite difficult

Requires 3D points distributed over LT measurement volume known to higher accuracy than LT measurement

Laser Tracker Component Calibration

- Angle Measurements
 - Rotary calibration table with an accuracy of better than 0.2 arcsec
- Distance Measurements
 - Interferometer bench, 32m long, HP interferometer, controlled environment

Horizontal Angle Tests

- Air Bearing supported rotary table, Kugler GmbH, Salem, Germany
- Renishaw Signum RESM angle encoder system
 - 4 read heads

February, 2008

IWAA08

- 0.01 arcsec resolution
- 1 as graduation accuracy
- Measurement accuracy after calibration <0.2as

Calibration of the rotary table (1)

Calibration of the rotary table (2)

Derived Technique

- set the fixture with the mirrors in a way that mirror 'a' is in line with autocollimator 'a'
- rotate the table together with the fixture until mirror 'b' is in line with autocollimator 'b'

Calibration of the rotary table (3)

Absolute value of an angle between two positions of the rotary table can be determined with ±0.2 as StD.

G. Gassner, R. Ruland gassner@slac.stanford.edu

February, 2008 IWAA08

L T Horizontal Angle Test Set-up

- Setup uses mirror as target for laser tracker pointing. Collimation avoids errors due to
 - non-parallelism of the two rotation axes
 - axial displacement of the rotation axes

Comparison SMR vs. SMM

- Test of Mirror (SMM) vs Retroreflector (SMR) pointing
 - Only small deviations can be found
 - Needs closer investigation in the 0 deg encoder region

Preliminary Calibration Results

Two calibration runs with Tracker A

Two calibration runs with Tracker B

February, 2008 IWAA08

ADM Calibration on Interferometer Bench

Test of ADM

Scale Factor

- Cyclic errors
- Tests of general performance and tests to detect malfunctions, e.g. count slips.

February,	2008
WAA08	

Calibration Results

Calibration run with Tracker A

Calibration runs with Tracker B

February, 2008 IWAA08

- We have established fully automated distance measurement test bench
- We are developing a test stand to calibrate LT horizontal angle measurements

Future improvements:

- Improve calibration accuracy
- Certify system
- Add vertical angle capability

STANFORD LINEAR ADDRESSATOR CONTR

End of Presentation