Alignment of S-LSR

H. Souda, M. Tanabe, T. Ishikawa, M. Ikegami, T. Takeuchi*, H. Tongu, T. Shirai, A. Noda

ICR, Kyoto University *Accelerator Engineering Corporation

Contents

1. Introduction of S-LSR

Purpose and specification of the ring Decision of alignment tolerance

2. Alignment

Magnet Shuffling Alignment with a laser tracker Magnet pole length measurement by a laser tracker

3. Effect on Beam Optics

Beta function and stopband COD and COD Correction

S-LSR at Kyoto University

Alignment of S-LSR

Collaboration with NIRS(National Institute of Radiological Sciences) Advanced Compact Accelerator Development project(JFY2001-2005)

Main purpose = Beam Cooling Electron Cooling of 7 MeV proton → Medical Application, Beam ordering Laser Cooling of 40keV ²⁴Mg⁺ → Low temperature limit, Crystalline Beam

- To get strong cooling force...
 Ion beam orbit must overlap electron/laser path
- Toward 3-dimensional Beam Crystallization...
 High periodicity(COD, Beta function) is necessary.

COD and beta function is important in alignment.

Overview of S-LSR

Alignment of S-LSR

Alignment tolerance

Alignment of S-LSR

COD from Misalignment vs. Magnet field error

Ber	nding Magn	ets	Quadrupole Magnets			
Error Source	Error Amount	COD (mm)	Error Source	Error Amount	COD (mm)	
BL Product	∆(BL/BL)= 1x10 ⁻⁴	0.33 (Horizontal)	33 Iorizontal) GL Product $\Delta(GL/GL) = 1 \times 10^{-3}$		0.	
X Position	D _x =0.1 mm	0.24 (H)	X Position	D _x =0.1 mm	0.11 (H)	
Y Position	D _y =0.1 mm	0.02 (V)	Y Position	D _y =0.1 mm	0.11 (V)	
S Position	D _s =0.1 mm	0.15 (H)	S Position	D _s =0.1 mm	0.	
X Rotation	D_{ϕ} =0.05 mrad	0.06 (V)	X Rotation	D_{ϕ} =0.05 mrad	0.01 (V)	
Y Rotation	D_{θ} =0.1 mrad	0.15 (H)	Y Rotation	D_{θ} =0.1 mrad	0.02 (H)	
S Rotation	D_{ψ} =0.05 mrad	0.10 (V)	S Rotation	D_{ψ} =0.05 mrad	0.	
Alignment Tolerance						

Displacement: 0.1mm Rotation:0.1mrad(BM) 1mrad(QM)

Bending Magnet Shuffling

Alignment of S-LSR

15013

Quadrupole Magnet Shuffling

6!x6! = 518400 patterns brute-force search by MAD

Alignment of S-LSR

Alignment using Laser Tracker

Alignment of S-LSR

20 Dec 2004 ~ 24 Dec 2004 25 Jan 2005 ~ 26 Jan 2005

Alignment chief: T. Shirai(ICR, Kyoto Univ.) Measurement: K. Mishima(PASCO)

Laser Tracker: SMX Tracker4500 Total Station: Leica TDA5005 Resolution ~50µm

Result of Alignment

All displacements are less than 0.1mm 65% are less than 0.05mm

QM displacement

Measurement of magnet pole length

Alignment of S-LSR

Actual pole length (base line of effective length) is measured by laser tracker.

Reference plane of Rogowski cut Measure 3 points to determine the line Knife-edge contact type probe Accuracy ~0.2mm

Measured magnet pole length

Alignment of S-LSR

Serial No.	Location	Error		
15012	BM3	Upstream 0.0 mm		
13012		Downstream -0.4 mm		
15013	RM/	-0.1 mm		
15015		-0.1 mm		
1501/		0.0 mm		
10014		-0.1 mm		
15015	RM1	-0.1 mm		
10010		-0.2 mm		
15016	BM6	0.0 mm		
15010		0.2 mm		
15017	BM2	0.1 mm		
13017		-0.1 mm		

COD: Max 0.8mm → 1.0mm RMS 0.3mm → 0.4mm (5th of 120)

Effect to the Beam Optics

		Dx[mm]	Dy[mm]	Ds[mm]	D¢[mrad]	$D\theta[mrad]$	Dφ[mrad]
Translation	BM1	-0.017	0.003	0.049	-0.037	-0.027	0.020
Tansiation	BM2	-0.010	0.027	-0.013	-0.007	-0.104	0.007
	BM3	0.053	0.040	0.009	0.000	-0.032	-0.040
Rectangular	BM4	-0.029	0.043	0.008	-0.013	0.006	-0.010
Coordinate	BM5	0.031	-0.090	0.039	-0.037	-0.004	-0.013
to	BM6	0.048	-0.027	-0.004	-0.040	-0.018	-0.007
Frenet-Serret	QM11	0.002	0.050	-0.026	-0.020	-0.169	-0.010
Coordinate	QM12	0.048	-0.030	0.012	0.030	0.174	-0.020
	QM21	-0.050	-0.040	-0.032	0.010	-0.076	-0.010
У	QM22	0.003	0.080	-0.030	0.070	-0.130	-0.010
	QM31	0.027	0.060	0.020	-0.020	-0.725	0.000
	QM32	-0.019	-0.010	0.029	0.000	0.077	-0.050
U V S	QM41	0.046	0.000	-0.042	-0.030	0.277	-0.050
Ψ	QM42	0.003	0.050	0.071	-0.030	-0.421	-0.020
	QM51	-0.058	-0.070	0.084	-0.070	0.163	0.030
Ψ	QM52	-0.032	-0.070	-0.079	-0.030	0.270	0.040
	QM61	-0.017	-0.050	0.019	0.050	0.205	-0.040
	QM62	-0.052	-0.070	-0.030	0.050	0.108	0.010

Beta Function

Beta function measurement Change QM correction current Measure betatron tune shift

Position β_x (meas)	
	$\beta_x(MAD)$
QM11 2.137	2.252
QM21 2.184	2.256
QM22 2.149	2.253
QM32 2.089	2.254
QM41 2.164	2.255
QM51 2.164	2.254
QM61 2.179	2.253

Stopband Measurement Change QM main current Measure beam life(>10sec) around v=1.5

 $\delta v_x = 1.1 \times 10^{-3} \text{ (calc } 0.8 \times 10^{-3}\text{)}$ $\Delta \beta_x / \beta_x < 2 \times 10^{-3}$ $\delta v_y = 1.2 \times 10^{-3} \text{ (calc } 0.6 \times 10^{-3}\text{)}$ $\Delta \beta_y / \beta_y < 6 \times 10^{-3}$

 $\Delta\beta_x/\beta_x = 0.06(2\sigma)$

COD Measurement & Correction

Alignment of S-LSR

COD correction result

40keV ²⁴Mg⁺ beam, v = (1.644, 1.197)

Max 2.9mm \rightarrow 0.38mm (calc 1.0mm) RMS 0.85mm \rightarrow 0.27mm (calc 0.4mm) Max 3.7mm \rightarrow 0.39mm (calc 0.7mm) RMS 2.1mm \rightarrow 0.33mm (calc 0.4mm)

- Bending and quadrupole magnets of S-LSR was aligned using a laser tracker.
- Magnets are shuffled to minimize COD and betatron stopband.
- All magnets were aligned with displacements of less than 0.1mm, 65% are less than 0.05mm.
- Measured COD is the same order of calculation by alignment error, and corrected to +/-0.4mm.