Undulator Alignment for the SPring-8 XFEL

Makina Yabashi, Takashi Tanaka, Sakuo Matsui, Hirokazu Maesaka, Yuji Otake, Hideo Kitamura, Tsumoru Shintake, Tetsuya Ishikawa, Noritaka Kumagai yabashi@spring8.or.jp

RIKEN XFEL Project Head Office

IWAA08: The 10th International Workshop on Accelerator Alignment Jan. 12 2008 @KEK

Acknowledgement

RIKEN & JASRI Joint Project for XFEL : Takao Asaka, Yoshihiro Asano, Hitoshi Baba, Teruhiko Bizen, Hiroyasu Ego, Toru Fukui, Shunji Goto, Hirohumi Hanaki, Toru Hara, Takaki Hatsui, Atsushi Higashiya, Toko Hirono, Naoyasu Hosoda, Takahiro Inagaki Shinobu Inoue, Miho Ishii, Toshiro Itoga, Hiroaki Kimura, Masanobu Kitamura ,Satoru Kojima , Togo Kudo, Hirokazu Maesaka , Xavier Marechal, Sakuo Matsui, Hiroshi Matsumoto (KEK), Tomohiro Matsushita,

Mltsuru Nagasono, Haruhiko Ohashi, Toru Ohata, Takashi Ohshima, Kazuyuki Onoe(Alvac), Yuji Otake, Tatsuyuki Sakurai, Takamitsu Seike, Katsutoshi Shirasawa, Shinsuke Suzuki, Kazuhiko Tahara, Tetsuya Takagi, Sunao Takahashi, Takeo Takashima, Masao Takeuchi, Hitoshi Tanaka, Ryotaro Tanaka, Takashi Tanaka, Yoshihito Tanaka, Shingo Taniguchi, Takanori Tanikawa, Tadashi Togashi, Kazuaki Togawa, Hiro Tomizawa, Shukui Wu, Akihiro Yamashita, Kenichi Yanagida, Chao Zhang, Tsumoru Shintake, Noritaka Kumagai, Tetsuya Ishikawa, Hideo Kitamura, ...

SPring-8 site

SPring-8 (1436 m) since 1997

XFEL (700 m) from ~2011

Project Schedule

Undulator hall

Undulator alignment

Segmented undulators should work as if they were single module !!

Criteria

T. Tanaka, SIMPLEX

- 1. Straightness of trajectory: $\theta_{\rm C} < 0.6$ urad ($L\theta_{\rm C} < 3$ um)
- 2. Magnetic field deviation: $\Delta K/K < 2e-4$

Fig. 1. Trajectory error model. (a) zigzag error, (b) curved trajectory error.

Different approaches

It is difficult to foresee the initial status (stability, reproducibility ...) Multiple approaches should be prepared

E-beam: Iris-coupled BPM (~ a few 10 um)

P-beam:

Spatial profile of monochromatic x-rays (~ a few um) Spectrometer (Magnetic field deviation: 1e-4)

Alignment of BPMs

STEP 0: Initial condition

STEP 1: Align BPMs to straight line

STEP 2: Steer e-beam to the BPM origins

Iris-coupled BPM

Dr. Shintake

Fig. 2. Alignment stations in the undulator line are distributed in each 5 m separation. When we use HeNe laser alignment system, we open the undulator gap. SCSS CDR 2005

Problem: Large diameter of laser iris (> 5 mm) is required for suppressing diffraction Shorter wavelength radiation

Shorter wavelength source

1. UV: e.g., He-Cd laser

2. X-rays: Alignment undulator Yang & Friedsam, IWAA 2006

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 030701 (2006)

High-resolution accelerator alignment using x-ray optics

Bingxin Yang and Horst Friedsam Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 21 December 2005; published 3 March 2006)

Alignment undulator

P-beam based alignment

Separation of profiles

K-value adjustment (SLAC's proposal)

Measurement of e-beam parameters (SLAC)

(Charge meas res.	0.5%	
	Energy jitter	0.1% rms	
	Energy meas. Res.	0.003% rms	
	E- angle jitter	0.5 µrad rms	
	Detector noise	100 photons rms	
	Peak signal	10 ⁵ photons	

Single-shot spectrometer

Grating spectrometer:

Shigemasa & Yabashi, JSSRR, 2006

Low efficiency in hard x-ray regime: Multilayer grating ?

Ishino, Koike et al, Appl. Opt. 2006

Fig. 2. Schematic diagram of a multilayer grating.

Single-shot spectrometer

Summary: Requirement for machine & undulator

	Trajectory alignment	<i>K</i> -value adjustment
Charge	~ 0.3 nC	As large as possible
Projected emittance	$\leq 5 \ \pi \text{mm.mrad}$??	
Bunch compression	unnecessary	unnecessary
Energy spread σ_E (along bunch)	~ 1e-3	≤ 3e-4
Energy jitter (pulse-to- pulse)	~ 1e-3	~ 1e-3
Angular jitter (pulse-to- pulse)	< 10 µrad (1 mm / 100 m)	< < 3 µrad
Preliminary positioning accuracy of BPM	~ 50 µm	
BPM resolution & stability (single shot)	<< 4 µm	
e-beam kick inside undulator	<< 0.6 µrad ?? (Larger value may be tolerable)	22

Summary

Trajectory:
Course tuning (~ 10 um): iris-coupled BPM, alignment undulator
Fine tuning (~ um): Spontaneous radiation with monochromators, thin-crystal monochromator

Magnetic field:

Single-shot spectrometer

Imposes special condition for e-beam operation

2D-detector

High-efficiency, moderate rep. rate (~1 Hz), resolution (~50 um)