IWAA

T. Dobers, M. Jones, D. Missiaen, C. Podevin, J.P. Quesnel

Overview

\square Introduction to the LHC Project
\square the initial alignment
\square The final alignment
\square The measurements
The PLANE software
\square Conclusions

The LHC Project

IWAA

CERN Where the web was born...

IWAA08 11-15 Feb 2008 KEK, Tsukuba, Japan - D. Missiaen

The First Alignment

08
\square From the geodetic network
measured from the position of the LEP collider main quadrupoles
\checkmark Using levelling, horizontal angles, Mekometer distances, gyroscopic orientations and offset measurements

- How
\checkmark Using optical level NA2, TDA5005 distances, offset measurements
\checkmark Local horizontal smoothing
\square Accuracy
\checkmark In order to obtain the best absolute position
\checkmark A relative position of
- 0.15 mm at $1 \sigma \mathrm{in} \mathrm{z}$
0.25 mm at 1σ in x and y

IWAA

The Firs Alignment

IWAA

IWAA
 The Final Alignment

\square Operation that
\checkmark Suppress the steps which pertubates the particle beams
\checkmark Improve the relative accuracy of the components
\checkmark Has to take place when the magnets are « cold », i.e. all the constraints have occured
\square What magnets
\checkmark All cryo-magnets not only the MQs
\checkmark To prevent the shearing off the tubes in the interconnect
\square Accuracy
\checkmark Deviation to a smooth line not exceeding of 0.15 mm at 1 s
\square Steps
\checkmark Roll angle, Vertical and Horizontal measurements
\checkmark Calculation of the smooth line with «PLANE »
\checkmark Displacement of the magnets out of tolerance

Roll angle measurement

With a special instrumentation installed on two fiducials

- No important me

Slight degradati
\square Per sector, 3 da team of 2 perso measurements corrections

WAA

Vertical measureme

- Instruments

\square Advantage
\checkmark Regular sequence

Half cell $\mathbf{N + 1}$
Half cell \mathbf{N}

Vertical measurement

Sector 5-6: Deviations to nominal hight

\square Scale factor
\checkmark a staff problem which was too tight by 0.2 mm on 800 mm
\checkmark Measurements corrected by 1.00025

Vertical measurement

Collimation problem
\checkmark Check-and-adjust was giving surprising values day from the other
\checkmark The difference of heights of the turning points was not the same from station N and station $\mathrm{N}+1$
\checkmark the difference of distances between Stations is $\sim 11 \mathrm{~m}$
\square When a significant ${ }_{0}^{\mathrm{A}} \quad{ }_{0}^{\mathrm{B}}$ ion is found, measurements were corres $d A n$

Vertical measurement

Discrepancies between both runs
No influence on the relative position of magnets
\square Still to be investigated

Vertical measurement

08

LHC Secteur 6-7 lissage froid, Nivellement

Levelling blocked at each side of the sector on deep references
\square No big deviations
Points to be moved calculated by plane (later in this talk)
Saw tooth phenomena visible for most of the sectors

IWAR

Vertical measurement

\square Length of the wave is a half cell length $\sim 53 \mathrm{~m}$
\square Probably due to a collimation error of the NA2 used during the initial alignment (unstability of the optical axis)
\square Large Influence when no equality of distances

Vertical measurement

Levelling of the LHC

Levelling has been blocked on all the deep references

- No large deviations

Horizontal measurement

08

Half cell $\mathbf{N}+2$

Offset measurement

LHC 7-8 lissage à froid - écartométrie- distribution des résidus après compensation

Sectors 78 and 45 measured at cold
\square Very good quality of the measurements

Sector	Number of measurements	r.m.s $(\mathbf{m m})$	Average $(\mathbf{m m})$
45	920	0.051	0.009
78	877	0.040	-0.007

Horizontal Measurement

\square For each sector, compensation avec 1 fixed pt, and orientation pt and radial constraints

- No big relative deviations
\square Points to be moved calculated by «Plane»

Smoothing with "Plane"

offset

Windowing with Plane

Smoothing of two Sectors

Cumul [m]

Smoothing with "Plane"

\square Vertical					\square Horizontal			
	Stdev before smoothing (mm)	Stdev after smoothing (mm)	$\begin{array}{\|c} \text { Points to } \\ \text { be } \\ \text { moved } \end{array}$		Sector	Stdev before smoothing (mm)	Stdev after smoothing (mm)	Points to be moved
1-2	0.16	0.10	41		4-5	0.19	0.11	65
2-3	0.17	0.12	63		7-8	0.17	0.11	41
3-4	0.18	0.11	84					
4-5	0.15	0.11	45					
5-6	0.15	0.10	49					
6-7	0.13	0.10	20					
7-8	0.19	0.11	53				\%	
8-1	0.16	0.11	67					

- 53 magnets moved/23\%

Good improvement of the smoothing process
\square in both directions, the specification of 0.15 mm is reached
\square Same accuracy in vertical and horizontal

Conclusions

The final alignment smoothing is very important \checkmark For detection of big errors or movements
\checkmark to improve the quality of the relative position of magnets just before a physics run
\square Instrumentation and methodology
\checkmark Very good quality of the offset measurements
\checkmark Still difficult to have good levelling measurements
\square The results for LHC
\checkmark All sectors smoothed for the roll angles and in vertical plane, only two sectors in the horizontal under cold conditions
\checkmark In both planes no important relative deviations
$\checkmark \sim 53$ Magnets moved/sector
\checkmark deviations under 0.15 mm rms as specified

