
4. Klystron small-signal gain-bandwidth calculations
In the previous sections, we developed most of the fundamental theory necessary to make the formulae used in practical klystron design credible and to help in applying them correctly.  These dealt with electron bunching in the beam and in the interaction between beam and circuit, and were largely on small-signal approximations. In this section and those that follow, we will describe the use of the theory in practice and illustrate it with numerical examples and with the design of practical klystrons. 

The classic klystron circuit, with which a pencil beam interacts, is a direct descendant of the Hansen “rhumbatron” and consists of a cylindrical cavity operating in the TM01 mode, providing an axial field in the direction of the beam traversing the cavity. In order to concentrate the electric field and enhance coupling to the beam, the two drift tubes are usually (but not always) reentrant. More complex interaction circuits are in use supporting multiple modes in the axial direction (extended interaction) or in a transverse direction (sheet beam klystrons), or both. These will require special treatment. For the time being, we will analyze the performance of multicavity klystrons employing simple cylindrical cavities. 

A klystron cavity can be usually treated as single-tuned resonant circuit consisting of a parallel combination of a capacitance, an inductance and a resistance across the interaction gap, and driven by the rf current in the beam.  It is driven by a “constant current generator”, producing the fundamental component I1 a beam that has been bunched by preceding cavities. This current produces a voltage V across the gap. If  I1 is high enough, and V comparable or higher than the beam voltage V0, power will be extracted from the beam  Such a circuit is fully determined by its resonant frequency, the total Q, and the “R/Q.”  The figure below, displays the circuit elements.
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Fig. 4-1 Equivalent klystron output circuit
The following relations apply:

Resonant frequency
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Total Q:

[image: image3.wmf]0

1111

Tbe

QQQQ

=++


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.2)

R/Q, ohms:
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The beam-loading conductance and susceptance defined in Lecture 2 are shown as an admittance Gb+Bb. The three Qs correspond to beam loading losses, cavity ohmic losses and the external load, respectively. The calculation of R/Q must use matching values of R and Q.  The physical description of R/Q is that it is the ratio of the square of the voltage V across the interaction gap of a klystron cavity and the energy W stored in the cavity, as follows,
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The two definitions are equivalent. 

Basically, klystrons are resonant, narrowband devices.  Nevertheless, they are usually required to have some limited bandwidth.  This bandwidth is primarily set by the R/Q of the output circuit, although the front end of the tube is required to produce sufficient fundamental-frequency rf current (I1)
 to drive the output circuit over the band of interest.  In what follows, we shall analyze the current-producing part of the klystron referred to as the “driver” section.  It will usually consist of two or more “gain” cavities, tuned within the band of interest, and one or more “penultimate” cavities tuned above the band.  The function of the penultimate cavities is to present an inductive load to the beam, which has the effect of shortening the length the electron bunches, thus increasing the rf current I1..  The importance of the R/Q parameter is most apparent when it is considered that the output circuit must present a total impedance RT to the rf current, such that the product I1RT is approximately equal to the beam voltage V0, a necessary condition for removing rf energy from the beam.  If the output circuit is the simple resonant circuit described above, its half-power bandwidth is,
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The output voltage and the overall klystron gain 
[image: image8.wmf]G

 are proportional to RT  and since RT is usually almost equal to RL,  it follows that, if a is a proportionality constant,
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indicating that the gain-bandwidth product of a klystron is proportional to the R/Q of the output cavity . More generally, if the output circuit is more elaborate, for instance a maximally-flat filter circuit presenting to the driving current an impedance RT, there is a circuit theorem for driving-point impedances with a capacitive input, which states
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Or, in words, if the required load impedance for best efficiency at the output cavity of a klystron is RT, then the maximum bandwidth attainable with a single-gap output is equal to the cavity R/Q multiplied by /2 and divided by RT.  The single-gap distinction is important because as we shall see, extended interaction (multiple-gap) output circuits do not obey this rule and make possible wider bandwidths than Eq.(4.7) indicates.

To describe this process analytically, we begin with the final expression for the driving current at a cavity n, resulting from the voltage across the gap of a preceding cavity m. (Eq. 3-32). Both that current and the voltage are measured at the circuit (in this case In can be an either small or large-signal quantity) and are linked to the effective voltage on the beam and the rf current in it by the coupling coefficient M. The ratio of In to Vm is called the “transconductance” gmn.
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The two coupling coefficients above are assigned to the two cavities and lmn is the drift distance between them.

 The gain cavities of a wide-band klystron are usually stagger-tuned in a manner similar to low-frequency cascaded amplifiers. However, feed forward currents make calculation more complicated.  The amplification mechanism begins with the velocity modulation being imparted on the electron beam by the rf voltage across the interaction gap in the input cavity.  In the drift spaces beyond, electron bunching produces rf currents, thereby exciting subsequent cavities and introducing an additional, amplified velocity modulation on the beam.  The original modulation, however, persists and rf currents originating from all previous cavities are finally summed at the output gap. A graphical rendition of the process is shown in the figure below.

[image: image12.jpg]


 

             Fig.4-2. Transconductances and cavities in a 5-cavity klystron
The overall gain function can be treated as a lumped constant network problem. The analysis proceeds as follows:

The voltage gain between cavities m and n is,
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where, the expression for the lumped equivalent circuit for  the nth cavity (at the operating TM01 mode) is,
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For the 5-cavity klystron in Fig. 4-1 above, the overall voltage gain can be written as,
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(4-10)



The first term in the brackets involves currents only between adjacent cavities. The remaining terms represent feed-forward currents skipping 2, 3 and 4 cavities.  

Equation (4.10) is rather daunting, but when programmed on the Mathcad analytical code that will be described later, it presents no difficulties. However, some additional insight can be gained by rewriting Eqs. (4.9) and (4-10) in complex notation and reexamining the gain function (4.10) on the complex frequency plane, where the real axis is  and the imaginary axis j. This is standard network theory which need not be explained here in detail since the results will be fairly easy to understand intuitively. 

The new variable is p = + js. It imaginary part s is normalized to 0 and shifted in origin with respect to 0 according to the relations below.  Here, 0 is the center of the klystron passband, which is assumed to be narrow (less than 10 per cent).  We write, 
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with the above approximation and, (4-10) becomes, 
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The impedance function  Z(p) is now a much simpler expression and the position of the root pn on the complex frequency plane is shown in Fig. 3. This root, known as a “pole” of the Z(p) function (marked by an “X”) has an imaginary part equal to the normalized resonant frequency n and a real part equal to -1/2Qn. The distance from the origin to the pole is the absolute value of the impedance Z(p) and the angle to the js-axis is the phase. It is evident that the approximation and the change in variables have not changed the magnitude of Z. At  = 0, Eq. (4-10) reduces to Z = R, as does Eq. (4-12).


[image: image18.wmf]




[image: image19.wmf]
[image: image20.jpg]



Fig. 4-3.  The normalized complex frequency plane

If we now convert Eq. (4-10) to the new variable and use the approximation above for all the cavities, we will obtain for the absolute value of the power gain the expression,
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In the above, A is a constant, a function of various circuit and beam parameters, the pn’s are the poles of the 5 resonant circuits, and the zn’s are the complex frequencies at which the gain function goes to zero. This happens because of the feed-forward terms. Consider Fig. 4-2: The various ways in which the feed-forward currents can produce zero gain do not depend on the input and output cavity tuning. All feed-forward currents from the input cavity are in phase, irrespective of its tuning, and the output cavity is the end of the line. Hence only the complex frequencies of the 3 middle cavities affect the position of the zeroes. This, besides algebra, accounts for the 3 zeroes in the G(p) function. In general, the gain functions of multicavity klystrons with single-tuned cavities have two less zeroes than poles. 

It is useful, and mathematically correct, to consider the poles and zeroes as positive and negative line charges into the complex frequency plane, and the logarithmic gain as value of the electric potential due to these charges, measured along the js axis. It is easy then to visualize the effect of poles and zeroes on the shape of the gain response of the klystron. There will be gain peaks opposite poles and gain depressions opposite the zeroes. The steepness of both will depend on the distance of the pole or zero from the js axis.  For the poles that distance is inversely proportional to the QT of the cavity concerned, hence the lower QT is, the less pronounced the gain peak.  The problem then is to arrange the resonant frequencies of the cavities so that the gain is reasonably flat within the band of interest.  Since the gain will be depressed in the vicinity of the zeros, the pole arrangement must be such that a zero is either moved outside the band or else is canceled by an adjacent pole.  For drift lengths below a quarter space-charge wavelength, the nearest zeros will be distributed toward the high frequency end of the band and will move closer towards band center as the drift angle is decreased.  Consequently, tuning arrangements for the shorter drift angles will have more cavities tuned above band center to counteract the effect of the zeros. The klystron frequency response will generally fall off more sharply at the high end of the band, due to the presence of zeroes there. 

The bandwidth for a given number of cavities will be rather closely related to the bandwidths of the individual cavities.  It is frequently desirable to reduce the cavity quality factor by resistive loading.  In the early stages where the power extracted thus from the beam is not a problem, this is satisfactory, in principle.  It is, however, often mechanically inconvenient.  The simplest Q factor reduction is accomplished through using the power required to velocity modulate the beam.  The beam loading parameter is a function of gap geometry, and in general, the beam loaded Q of a cavity is reduced when the gap spacing is increased. 

A simple example, that does not require a computer is in order. We shall use a 3-cavity klystron example to illustrate the process with analytic expressions.  For  n = 3, Eq. (4-10) becomes:
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The power gain expression is ,
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This is obviously a three-pole, one-zero function. To calculate the zero we will assume 

for simplicity that the three cavities have identical gap geometries and R/Qs, and that they are equally spaced along the beam. We would then have,
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Setting 
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It is worthwhile to work out a numerical example, to illustrate the pole-zero technique for calculating the logarithmic gain. Below is set of parameters for a 3-cavity klystron operating at 3 GHz, at about 25 kW power output:
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It can be shown that the power gain can be written, in terms of the poles and zeroes,
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Taking the log of both sides, we have for the power gain in db,
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The figure below shows the movement of the zero z1 as the cavity spacing changes from 15 degrees to 90 degrees, at which setting the single zero is at infinity and has no longer any effect on the power gain function.  That also maximizes the gain at the center frequency js = 0. 
We can make a rough estimate of the bandwidth of a single gain cavity in order to gain some insight to the design of broad-band klystrons. The maximum beam loading conductance that can be attained for ordinary gaps (e ( 1, a ( 1) is equal to about 0.15 times the dc beam conductance, (see Fig. 2-7)
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if we assume a commonly encountered R/Q = 100 ohms,  then,
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For an example that follows, where the beam in a 1.2 MW klystron has V0 =83 kV and I0 = 24 A, a Qb of about 240 can then be expected from (4.18). That, together with ohmic losses would produce an approximate 3-db bandwidth 0.4% for that gain cavity. If there are 3 cavities in the gain section of the klystron, it should be possible to stagger-tune these cavities with as much as a 2% bandwidth in the current driving the output cavity. That cavity however must have that bandwidth by itself, at the correct impedance, in order for the saturated klystron bandwidth to be that wide. 
A comprehensive theory does not exist which would allow direct design for a specified gain bandwidth product. Optimization is obtained by trial-and error stagger-tuning through the use of an analytical Mathcad code such the one described below. Alternatively, the zeroes can be calculated by solving for the roots of the numerator polynomial.  A graphical method can then be used to obtain the logarithmic gain response directly from the locations of poles and zeroes on the complex frequency plane. 

Qualitatively, we can say that the gain-bandwidth product of the driver section can be improved almost indefinitely by adding cavities.  This can, however, lead to an excessively long tube.  The usual design procedure is to determine the bandwidth that can reasonably be expected of the output stage, and then design a driver section having adequate bandwidth with the required total gain.  In doing so, one must remember to allow 3 to 5 dB reduction in gain due to saturation.  

We now turn our attention to the output circuit, which, as explained earlier, must have adequate impedance and bandwidth to take advantage of the rf current provided by the driver section of the klystron.  Analytical treatments of the problem, although in existence (for decades now), are simply not accurate enough to bother with, given the availability of codes that are capable of simulating the physics in one, two or three dimensions.  These will be examined later in this section.  For now, we shall propose a simple formula for determining the loading required for a single-gap output cavity, since that sets the bandwidth of the klystron.  

Assume that the rf current driving the output cavity is estimated to be I1 and that the R/Q and the coupling coefficient M are known.  Then the current induced in the output circuit will be M × I.  This current will develop a voltage V1 across the parallel-resonant equivalent circuit, whose impedance is Qt(R/Q.  In a general and rather simplistic way, this voltage must be sufficient to bring beam electrons to a stop, extracting the kinetic energy they acquired by being accelerated by the beam voltage V0.  If a voltage across the circuit capacitance (the cavity gap) is to produce a voltage V0 at the beam, we must have V1M = V0.  Expressing the foregoing in an equation, we have
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which, rewritten in a more convenient form, provides a value for the desired Qext   
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In (4-16), Qe has been substituted for Qt, since in most cases the coupling will be sufficiently strong (and Q0 will be sufficiently high) to make the approximation Qe(Qt valid.  Eq. (4-20) is intended only as a guide for the approximate value of the output cavity external Q. It is, as the gain is, very sensitive to the value of the coupling coefficient at the output gap, which in turn is very sensitive to the beam size. 
We are now in the position to illustrate the foregoing theory with some examples making use of the methods used at SLAC for klystron design.  These are the analytical, small-signal, MATHCAD gain-bandwidth calculator, the “AJ-Disk” one-dimensional simulation code, and 2D and 3D MAGIC codes.  Because of its complexity and the time required to run it, MAGIC is considered as a check on the other two codes, rather than as a design tool.  We have chosen two examples, of klystrons operating at two frequency extremes in order to illustrate the issues involved and the efficacy of available design methods to tackle two very dissimilar devices. 


The first example is for a klystron currently in production at SLAC for use in the PEP-II (B-Factory) electron-positron asymmetrical storage ring collider. The original specifications for the B-Factory klystron (BFK) were as follows,



Frequency: 

476 MHz



Output power:

1.2 MW CW

(4-21)





Beam Voltage:
83.5 kV




Beam Current:

24 A



Efficiency:

 > 60%   



Gain:


 > 43 dB



1-dB bandwidth:         6 MHz
`

Group delay:

<100 nsec in
[image: image34.wmf]±
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For reasons of linearity (required because of feedback systems in the PEP-II rings) the klystron was to be operated at drive levels well below saturation. The linearity specification required good efficiency and a collector designed to accept the full 2-MW beam power. The delay specification was found in simulation to be attainable as long as the specified bandwidth was realized. What follows is an analysis of the electrical design only. The mechanical design of the collector will be discussed in a later lecture.

We will now describe the design steps that let to the choice of the perveance, the number of cavities, their spacing and tunings, and the choices of external Qs. We shall  also compare the accrual performance of the klystron to the small-signal Mathcad calculations, the “A-J Disk” one-dimensional simulation and the a 2-D MAGIC simulation. 
Below is a complete description of the code, as it applies to the BFK design.  A working 7-page listing is provided as an attachment.  It can be followed using the text below.  The content of the code is largely self-explanatory, with Mathcad displaying the operational equations in an easily readable format.  Key equations used in Mathcad and derived in this chapter (in blue) are numbered as in the main text.  The “input file” is located on page 6 of the listing.  The following variables, defined in the Mathcad code, should be initialized:

· Vo 
– DC beam voltage (V)

· Io
– DC beam current (A)

· f0 
– operating frequency (GHz)

· a 
– tunnel radius (m)

· b 
– beam radius (m)

· npoints – the number of frequency points within the bandwidth 
· BW 
– the bandwidth over which the frequency response is calculated
· N 
– the number of klystron cavities  
The number of rows at the bottom of the page (containing variables RQ, Qe, Qo, etc.) should be changed to match this input.
· RQn 
– the cavity R/Q’s 

· Qen 
– the external Q’s (set to ( for those cavities with no external coupling)
· Qon
– the ohmic Q’s
· fn 
– the cavity center frequencies (GHz)

· Ln 
– the gap-to-gap spacing, from center to center (m)
· dn 
– the gap width (m)
· Man 
– the coupling coefficient at r = a
The major elements of the code are now outlined on a page-by-page basis, with reference to the highlighted text equations. 

Page 1 of the code defines constants and contains the calculation of some basic quantities, such as the perveance.  The first set of highlighted equations (A-1) compute the “depressed beam voltage” (voltage at 0.707×b, the beam “center of mass”), as a function of Vo, perveance, drift tube radius, and beam radius.  The second highlighted equation (A-2) computes the Brillouin field, as a function of Io, the depressed beam voltage Vod, and the relativistic correction factor.

Page 2 includes the calculation of the reduced plasma frequency.  The method of Branch and Mihran is followed.  The variable R1 is an initial guess required by the Mathcad solving routine.  The value of R1 is used in the highlighted equation (3.31), from which the reduction factor is calculated.  The result is in the blue background box. After computing the reduced plasma wavelength, the remainder of the page is devoted to initializing several matrices to be used in the gain calculations that follow.

Page 3 contains calculation of the coupling coefficient, in equation (2.59), and beam loading, in equation (A-5).
The calculation of the klystron’s frequency response is critically dependent on the evaluation of the coupling coefficient.  There are three possible approaches: The first is to use Eq. (2.59), which can be done by Mathcad alone and is the quickest approach.  

This yields
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Another method, which does not rely on the approximation involved in equation (2.40), is to simulate the cavity field by HFSS or SUPERFISH, and use equation (2.33), evaluated at the r = a to calculate Ma(e).  This yields

Ma(e) = 0.8334  and,   M = 0.7774
Finally, in order to compare the Mathcad calculated result with the AJ-disk simulation (which follows) we use the HFSS or SUPERFISH simulation above and match the Ez field variation with z to the Gaussian assumed by AJ-disk (see below).  We then calculate a coupling coefficient at r = 0.707 * b (rather than average it over the beam), which is how AJ-disk evaluates M. This yields, M = 0.7333.  Since M appears in the gain equation in powers as high as 10, the above 5% spread in the calculation of M produces substantially different frequency responses for the klystron.  These are compared in Fig. A-1.

 The beam-loading conductance represents the energy transfer from the cavity to the beam.  In Equation (A-5), this is calculated using the formula for the field in a knife-edge gap as was used to calculate a coupling coefficient.  The beam-loaded, Qb is determined from Gb and the cavity R/Q.  An alternative calculation is to use equation (3.52), which requires that the fast and slow-wave coupling coefficients be calculated by using equation (2.59) with e replaced by 
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.  In this case, equation (A-5) of Mathcad is used.  This calculation results in a slightly different value for Gb, which makes little difference to the klystron frequency response.  Equation A-5, however, is important in determining the stability of extended interaction cavities, which must have a positive total Q, when it is calculated as a parallel combination of Qb, Qe and Q0.  A Qb with a low negative value may lead to a cavity monotron oscillation.
On Page 4 is the definition of the gap impedance:  the highlighted equation (6.9).   The definition of the total klystron transconductance is shown in Equation (6.7).  Finally, the klystron power gain is computed in the highlighted Eq. (6.12).

Page 5 includes curves of the gain response at each cavity, allowing the evolution of the klystron gain to be monitored.  The remainder of this page is programming to determine 1-dB and 3-dB bandwidths.
The input fields on page 6 have been discussed previously.  The highlighted equation (6.20) is an empirical expression for the desired Qe of the output cavity.  If the reader wishes to use the optimal Qe value, the second column of the cavity inputs at the bottom of the page should be modified.  The blue fields contain the maximum gain, the gain at the center frequency, and the 3 dB bandwidth.  The 1 dB bandwidth is also calculated. 

The program concludes with a listing of beam-loading conductance (ohms), beam-loaded Q, gap location (m), total coupling coefficient, the reduced gap-to-gap transit angle (degrees), the gap transit angle (radians), and the unloaded Q (Qe in parallel with Qo) on page seven. 

It was decided to design a klystron with 3 gain cavities, followed by a second harmonic cavity to improve bunching and efficiency
, followed by 2 “penultimate cavities” (to limit the total voltage necessary for the final bunching), and an output cavity with loop coupling and a coaxial output window. For the purposes of the Mathcad calculations, this is a total of  6 cavities (the 2nd harmonic cavity does not affect the small-signal calculations). 

The perveance of 1x10-6 was chosen as a compromise between good efficiency and a reasonable DC voltage. The gun does not present a serious challenge, since at this frequency, reasonable choices of beam and drift tube diameters do not require a large beam convergence.  The electron gun was designed for a maximum current density of 0.3 a/cm2. Computer simulations predicted a beam diameter of 0.45 cm and the beam tunnel was chosen at 7 cm. This resulted in a a = 0.6, which produced good coupling coefficients and hence good gain bandwidth. None of the cavities were loaded, but the first two had wider gaps for a lower Qb and improved bandwidth. Notice that the empirical calculation A-10 gives Qe6 = 33. However, the operating value of Qext = 38.9 was determined by a more accurate large-signal simulation. 
All cavities except the output are made of stainless steel cylinders and end plates which are copper plated.  The output cavity is all copper for good circuit efficiency.  All cavities except the output are tunable over approximately 3 MHz by deforming an end wall slightly, thus changing the gap length (capacitive tuning) The 2nd harmonic cavity can be tuned over twice that range. 

An outline drawing of the BFK and the Mathcad calculation is shown in Fig. 4-6. The bandwidth is 10 MHz. In practice the cavities can be fine-tuned to produce the required group delay. 

[image: image38]
Fig. 4-5 The BFK just off the pumps.  The tube is 15 ft. long.
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The A-J* disk is a considerably improved 1-dimensional klystron code previously known as “Japandisk”. A-J disk is considerably friendlier than Japandisk, as well as more accurate. It was rewritten in C++ (from Fortran) and runs much faster.

     The code employs the “disk model”, in which groups of electrons are represented by disks of charge inside a cylindrical drift tube. The disks are accelerated by the beam voltage, their individual charges are made consistent with the current in the beam, and the field arising from these charges is described by a “Green’s function”, which depends on the disk (beam) and drift tube diameters, the current, the voltage, and the axial component z. The disks can penetrate and overtake each other. The klystron cavities are characterized partly as lumped circuits (functions of the various Qs, R/Q and resonant frequencies), and also by the field developed across their gridless gaps. The gap field is represented as a Gaussian function of the beam and drift tube diameters and the gap length. 

     Typically, 32 disks (max = 64) are employed within a period 1/f. Output power and efficiency are calculated by integrating disk velocity at the exit of the output cavity, and by forming the product of the induced current and voltage at the output cavity. Issues such as beam loading and plasma frequency reduction are treated by the introduction of appropriate formulae into the code. Electrons (disks) are not reflected by the field at the output cavity. Consequently, if the voltage there is allowed to rise beyond the beam voltage, the calculated efficiency should be questioned.
Following is a user’s tutorial for AJ Disk.  Each step necessary to open AJ Disk and simulate a klystron is discussed in detail. AJDISK is available from lecture web site.

[image: image40]
· To get started, double click on the AJ Disk executable.  (ajdisk.exe)

· Next, select “file” from AJ Disk’s menu, and from within the “file” menu select “open.”  Now, select the file to be opened and press the “open” button.  AJ Disk should now display the window shown in Figure 6-7

The input parameters seen in Figure 4-7 are for the B-Factory klystron.  If the “OK” button is clicked then the simulation will begin. At the top of the window a number is counting upwards.  This number represents the number of iterations (the number of times a set of disks has been sent through the klystron in an attempt for cavity voltage convergence).  

Following is a line-by-line discussion of the inputs to be used with input deck

The 1st line contains the project’s title and the author’s name.

The 2nd line contains,

Vo ( kV ) 


- the beam voltage in kV

Io ( A)  


- the beam current in Amps

f ( MHz )


- the drive frequency in MHz

f ( Carrier )


- this variable is no longer used (set to zero)

The 3rd line contains, 
Drift Tube Radius (m.)
- the radius of the drift tube in meters 
Beam Radius (m.)  

- the radius of the beam in meters. 
Beta



- the radial coupling coefficient (set to one)

Pin ( W ) 


- the drive power in watts

The 4th line contains, 

# Disks 


- the number of disks

# Steps 


- the number of integration steps per rf cycle  

Max Iter. 


- the maximum number of iterations. Program stops if not 
  converged by 30 iter. 

# Cavities 


- the number of klystron cavities
The 5th line contains the cavity type which is,

1 for fundamental mode cavities, 2 for 2nd harmonic cavities, -1 for output cavities, and 0 for unused cavities

The 6th line contains the Qe’s ( the external Q’s )

The 7th line contains the Qo’s ( the ohmic Q’s )

The 8th line contains the R/Q’s

The 9th line contains the gap widths in meters, d ( m )

The 10th line contains the distances of the cavities from the input gap in meters, z ( m ),    and is   measured from gap center to gap center.

The 11th line contains the cavity frequencies, if  “Cavity Frequency” has been selected

 or cavity detuning from the drive frequency if  “Delta Frequency” has been selected

The 12th line contains the parameter “k” which determines the shape of the electric field distribution across the klystron gap), according to the following Gaussian equation,  
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Here, f(z), represents the normalized gap electric field shape. In practice, k is determined by using a field solver (Superfish version 7 available from LANL site ftp://sfuser:ftpsuperfish@laacg1.lanl.gov/) to determine the field at 0.707 times the beam radius (a simplified method of averaging).  The field can then be loaded into AJ disk by selecting the “import Gaussian k” button as shown in the input deck.  AJ disk will prompt the user for the center of the cavity (if the cavity is symmetric then only half of the cavity can be simulated and the center can then be input as zero).  AJ Disk will then supply a value for “k” which can be used in line 12 of the input deck.
   The results of the AJ-disk run are shown on Fig. 6-8
The next step is to further explore AJ Disk and how it works:

·  Select “file” from the menu.  From within this menu select “plots.”  Select “current.”  This same procedure may be used to view the velocity and phase diagrams as well.  AJ Disk should be displaying something similar to Figure 3.  This is a good way to view the plots in greater detail.


[image: image41]
Next, enter values for start, stop, and step.  For the BFK example the starting frequency will be 470, the stopping frequency is 484, and the step is 1.  This tells AJ Disk to sweep from 470MHz to 484MHz and to sample the gain at every 1MHz step.  

Press “OK.”  The simulation may take a few moments since it must simulate the klystron at several different frequencies.
Once the simulation is complete, select “view>>plots>>sweep” to see the results of the sweep.  The result is shown in Figure 6-9.
The main features of AJ Disk have now been covered.  However, on a final note, to save a file, use the checkboxes in the lower left hand corner of Figure 1.  *.dsk corresponds to the input file, *.plt corresponds to the output file with all the plotted data, and *.out corresponds to a file which contains data about the simulation.  These boxes must be checked prior to simulation for a file to be saved.

[image: image42]
Fig. 4-6  Small signal (blue) and saturated gain for the BFK, using AJ-Disk


[image: image43]Fig. 4-6 Small-signal xperimental results (purple), compared to Mathcad (blue), 2D MAGIC (green), and AJ-Disk (red)
� EMBED Equation.DSMT4  ���








� In previous sections, we have used lower case letters to indicate small-signal quantities and reserved capitals for large-signal currents.  In this case, and the in formulae which follow, the current I can be either. It can also be the fundamental component I1 of the rf current driving the output cavity. It will be made clear in the text which is the case.
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