NLC - The Next Linear Collider Project

Electron Cloud and Other Issues

ARDA Collective Effects Group
Electron Cloud

- Positron damping rings
 - Currently being studied by Mauro Pivi at LBNL
 - My interpretation:
 - Sees rapid saturation of e- plasma
 - Plasma density not enough to drive rapid multi-bunch instability
 - Need to confirm simulations and study single bunch effects
 - What about TESLA?
Electron Cloud

• Single Pass effects
 – Beam emittance is tiny (smaller issue for e-cloud than ions but still sensitive)
 – Multi- and single bunch

• 180 degree turn around
 – there are lots of photons,
 – the energy is relatively low,
 – the vacuum chamber does not have an ante-chamber

 – What is the impact of the vacuum chamber aperture
 – Previous aperture was near multi-pactoring resonance
Electron Cloud

- **Linac**
 - There is some radiation from quadrupoles - can this drive dipole instability through photo-ionization
 - Bending magnets in chicanes will send radiation down linac - is this important?
• Beam Delivery
 – There are lots of bends and a lot of photons,
 – the beta functions are huge,
 – the vacuum chamber does not have an ante-chamber

 – What is the impact of the vacuum chamber aperture
 – How important is photo-ionization here
Dark current questions:
- Can dark current drive dipole modes or cause transverse beam jitter
- What is effect on BPMs?
- Can dark current cascade with a net increase between quadrupoles?
- What is effect in TESLA?
Ion Instabilities

- Fast Beam Ion instability is predicted to be a possible limitation in:
 - Damping rings
 - Low energy transport lines
 - Final focus

- Can ions at IP be important?

- Is there a single bunch effect that is important in the BC or linac (possibly similar by Emma to that described in EPAC 94)
Summary

- Lots of questions for both NLC and TESLA
 - Electron cloud
 - There is radiation everywhere!
 - Single and multi-bunch effects might be important
 - Need basic scaling to understand where it might be important
 - Dark current
 - Dipole deflections
 - Cascade development
 - Ions
 - Possibly important because of small beam sizes
 - Again single and multi-bunch effects